

<u>PROGRAM</u>	:	NATIONAL DIPLOMA ENGINEERING : COMPUTER SYSTEMS ENGINEERING : ELECTRICAL
<u>SUBJECT</u>	:	MEASUREMENTS III
<u>CODE</u>	:	EMA 3111
<u>DATE</u>	:	SUPPLEMENTARY EXAMINATION JANUARY, 2020
DURATION	:	180 minutes
<u>WEIGHT</u>	:	50 : 50
TOTAL MARKS	:	100
ASSESSOR	:	DR AA ALONGE
MODERATOR	:	J. SEBASTIAN
NUMBER OF PAGES	:	5 PAGES AND 1 ANSWER SHEET

INSTRUCTIONS TO ALL STUDENTS

- 1. ATTEMPT ALL QUESTIONS.
- 2. TOTAL MARKS = 100%.
- 3. MARKS WILL BE DEDUCTED FOR UNATTRACTIVE AND UNREADABLE WORK.
- 4. DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY.
- 5. DIAGRAMS AND SKETCHES MUST BE LABELLED CORRECTLY.
- 6. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF THE QUESTION MUST BE GROUPED TOGETHER
- 7. QUESTION PAPERS MUST BE HANDED IN WITH EXAMINATION SCRIPTS

SECTION A: MULTIPLE CHOICE

Choose the most correct answer and mark an **X** over the corresponding letter on your answer sheet (Do all rough work at the back of the answer script). Each question attracts **2 marks**.

QUESTION 1

1.1 The art or science of measurement is described as _____

- A) Astronomy
- B) Technology
- C) Calibration
- D) Metallurgy
- E) Metrology
- 1.2 Which of these statement(s) are true of the process of measurement?
 - i) Most experiments require scientists to make measurements.
 - ii) Measurements are rarely
 - iii) Measurements are always somewhat different from the "true value."
 - iv) Measurements are not required for engineering and scientific investigations
 - A) I only
 - B) i and iv
 - C) i, ii and iii
 - D) iii only
 - E) None of the above

1.3 Which one of the following quantities below does not have a base/fundamental unit?

- A) Speed
- B) Length
- C) Mass
- D) Luminous Intensity
- E) Time
- 1.4 To reduce loading errors in ammeter, which of the following options should be considered?
 - A) Minimising meter internal resistance
 - B) Increasing meter internal resistance
 - C) Increasing the current supply to meter
 - D) Reducing the current supply to meter
 - E) None of the above
- 1.5 Noise, which is constant in amplitude and evenly spread out over the frequency band, is called______
 - A) Pink noise
 - B) Band-limited noise
 - C) Rayleigh noise
 - D) White noise
 - E) Random noise

EMA 3111 – MEASUREMENTS III (2020 Supplementary Examination)

1.6 Which statement best describes the function of an oscillator?

- A) A circuit that amplifies the characteristics of different waveforms.
- B) A circuit that generates direct current signals.
- C) A circuit that attenuates the characteristics of different waveforms.
- D) A circuit capable of producing a periodic and oscillating waveforms.
- E) A circuit that distorts waveforms for different purposes
- 1.7 The digital oscilloscope can be used for the following except:
 - A) Undertake voltage measurements
 - B) Determine the frequency of a target signal
 - C) Compare the characteristics of two signal sources
 - D) Amplify the characteristics of a target signal
 - E) None of the above
- 1.8 Which type of signal generator cannot be used to generate a waveform with frequency of 1 GHz?
 - A) RF signal generator
 - B) Sine wave generator
 - C) Pulse generator
 - D) Arbitrary waveform generator
 - E) All of the above

1.9 Which value of correlation coefficient below defines "no correlation"?

- A) 0
- B) -1
- C)∞
- D) 1
- E) -2
- 1.10 Which option below is not an advantage of measurement in the frequency domain?
 - A) It gives a better estimate of bandwidth consumption.
 - B) It can be used to determine the time domain property of a signal.
 - C) It can help provide information on bandwidth efficiency.
 - D) It can be used to measure spectral and channel power.
 - E) It helps to determine the effectiveness of different signals.

SECTION A (TOTAL) = 20 marks

SECTION B: THEORY AND ESSAY

This section is to be answered in your answer script. Please ensure that your answers are clear, well-ordered and precise.

QUESTION 2

2.1	Define the following terms as related to measurements:	
2.1.1	Range	(2)
2.1.2	Calibration	(2)
2.1.3	Sensitivity	(2)

2.2 The following data have been obtained from the measurement of ten randomly selected resistors (with true value of 150 k $\Omega \pm 10\%$) from a batch of recently ordered boxes from the manufacturer:

142.5; 137.9; 146.4; 155.5; 149.2; 158.6; 162.3; 154.4; 139.2 and 160.5

	Calculate the following:	
2.2.1	The arithmetic mean	(4)
2.2.2	The geometric mean	(4)
		[14]

QUESTION 3

3.1	Define the following terminologies as applied in measurement:	
3.1.1	Measurement unit	(2)
3.1.2	Fundamental unit	(2)

3.2 Two ammeters, X and Y, were used for the measurement of current 10 A. The following results were obtained for five repeated measurements:

Ammeter X

Trials	1	2	3	4	5
Current (A)	9.4	10.1	9.8	9.7	10.4

Ammeter Y

Trials	1	2	3	4	5
Current (A)	9.5	9.8	10.4	10.1	9.9

Using results from the experiments above, by showing all calculations and steps, answer the following questions:

- 3.2.1 Which of the ammeters is the more precise? (6)
- 3.2.2 Which of the ammeters is the more accurate? (6)
- 3.3 List two sources of error in measurement.

(2) [**18**]

QUESTION 4

4.1 Compare the four advantages of digital over analog meters as applied in the process of measurement. (4)

4.2 A batch of 20 μ f capacitors with a tolerance of ± 10 % was tested. The following values were obtained during the test:

22.0 µf, 19.4 µf, 19.1 µf, 19.8 µf, 19.3 µf, 20 µf, 19.6 µf, 20.8 µf, 18.4 µf and 21.5 µf

For the	e above data, determine the following:	
4.2.1	Mean of the components	(4)
4.2.2	Standard deviation and	(6)
4.2.3	Variance.	(3)
4.3	List two factors to consider when choosing a measuring instrument	(2)
		<u>[19]</u>

QUESTION 5

5.1	Mention two precautions when using the ohmmeter.	(2)
5.2	A series connected ohmmeter has a total internal resistance of 15 k Ω standard 9 Volt cell. Calculate:	and uses a
5.2.1	The scale mark values in Ω , for 25%, 50% and 75% of Full Scale Deflection	on (FSD).
		(5)
5.2.2	The percentage deflection for 1 k Ω , 10 k Ω , 100 k Ω	(6)
5.3	List three classifications of measuring instruments	(3)
		<u>[16]</u>

QUESTION 6

6.1	Describe the features of a frequency counter with respect to measurement.	(3)
6.2	Using appropriate diagram, draw, label and describe the internal structure Cathode Ray Tube (CRT) as applied in oscilloscope design	of a (6)
6.3	List the four applications of spectrum analyzer in relation to measurement	(4)
		[13]

SECTION B (TOTAL) = 80 Marks

STUDENT SURNAME:_____

STUDENT NUMBER:_____

ANSWER SHEET

(This sheet must be handed in with your examination script)

Mark your final answer with large clear cross (\mathbf{X}) over the box you have chosen as your answer.

1.1	А	В	С	D	Е
1.2	А	В	С	D	Е
1.3	А	В	С	D	Е
1.4	А	В	С	D	Е
1.5	А	В	С	D	Е
1.6	А	В	С	D	Е
1.7	А	В	С	D	Е
1.8	А	В	С	D	Е
1.9	A	В	С	D	E
1.10	А	В	С	D	Е

QUESTION 1

-6-

(20 marks)