

1

PROGRAM	:	National Diploma ENGINEERING: MECHANICAL
<u>SUBJECT</u>	:	ELECTROTECHNOLOGY 3
CODE	:	ELT 312
DATE	:	MAIN EXAMINATION / November 2019 November 2019
DURATION	:	
WEIGHT	:	40: 60
TOTAL MARKS	:	100
FULL MARKS	:	100
ASSESSOR	:	Ms EF Swana
MODERATOR	:	Prof AA Yusuff
NUMBER OF PAGES	:	4

REQUIREMENTS

- STANDARD STATIONARY.
- NO-PROGRAMMABLE CALCULATOR MAY BE USED

INSTRUCTIONS

- READ INSTRUCTIONS CAREFULLY.
- ALL CALCULATIONS AND ANSWERS MUST BE DONE WITH A MINIMUM OF 2 AND 1 DECIMAL IN NUMBERS AND ANGLE, RESPECTIVELY.
- WRITING MUST BE IN BLUE OR BLACK INK PEN ONLY- NO PENCIL WRITING WILL BE MARKED
- WORK NEATLY, UNTIDY WORK MAY BE PENALIZED.
- ALL UNITS MUST BE SHOWN-MARKS WILL BE DEDUCTED FOR NO OR WRONG UNITS
- ALL CALCULATIONS MUST BE DONE IN COMPLEX NOTATION AND ANSWERS MUST BE WRITTEN IN POLAR FORM, WHERE APPLICABLE.

Quest	tion 1 Electromagnetism	[14 Marks]		
1.1 St	(4)			
1.2 A	flux of 30 mWb links with a 1200 turn coil when a current of 5 A is pass	sing through the		
со	vil. Calculate:			
1.2.1	The inductance of the coil.	(2)		
1.2.2	The energy stored in the magnetic field.	(2)		
1.2.3	The average e.m.f. induced if the current is reduced to zero in 0.20 s.	(2)		
1.3 A	coil of 2500 turns has a flux of 10 mWb linking with it when carrying a	current of 2 A.		
Calcu	late the coil inductance and the e.m.f. induced in the coil when the curr	ent collapses to		
zero in	n 20 ms.	(4)		
Quest	tion 2 DC Machines	[22 Marks]		
2.1 Tł	ne armature of a dc machine has a resistance of 0.5 Ω and is connected to	a 200 V supply.		
Ca	alculate the e.m.f. generated when it is running:			
2.1.1	As a motor drawing 50 A.	(2)		
2.1.2	As a generator supplying 70 A.	(2)		
2.2 A	6-pole generator has a lap-wound armature with 40 slots with 20 conducted	ors per slot. The		
flı	ax per pole is 25 mWb. Calculate the speed at which the machine mu	ist be driven to		
ge	enerate an e.m.f. of 300 V.	(4)		
2.3 A	dc generator has a generated e.m.f. of 210 V when running at 700 rpm a	and the flux per		
po	ble is 120 mWb. Determine the generated e.m.f.:			
a)	At 1050 rpm, assuming the flux remains constant.	(2)		
b)	If the flux is reduced by one-sixth at constant speed.	(2)		
c)	At a speed of 1155 rpm and a flux of 132 mWb.	(2)		
2.4 A dc motor draws an armature current of 110 A at 480 V. The armature resistance of 0.2				
Ω	. The machine has 6-poles and the armature is lap connected with 864 c	conductors. The		
flı	ux per pole is 0.05 Wb. Calculate:			
2.4.1	The motor speed.	(4)		
242	Torque developed by the armature	(4)		

2

2.4.2 Torque developed by the armature. (4)

Quest	tion 3 Transformers	[16 Marks]			
3.1 A 10 kVA, single-phase transformer has a turns ratio of 12:1 and is supplied from a 2.4 kV					
suj	apply. Neglecting losses, determine:				
3.1.1	The full load secondary current.	(4)			
3.1.2	The minimum value of load resistance which can be connect	ed across the secondary			
	winding without exceeding the kVA rating.	(2)			
3.1.3	The primary current of the transformer.	(2)			
3.2 A	single-phase 800 V/100 V, 50 Hz transformer has a maximum c	ore flux density of 1.294			
Та	and an effective core cross-sectional area of 60 cm^2 . Determine	e the number of primary			
an	nd secondary turns.	(6)			
3.3 A	6 kVA, 100 V/500 V, single-phase transformer has a secondary	terminal voltage of 475			
V	when loaded. Determine the regulation of the transformer.	(2)			
Quest	tion 4 Three Phase Systems	[28 Marks]			
4.1 A	balanced three-phase load consists of three coils, each of resista	ance 4 Ω and inductance			
0.0	02 H connected in series. When the coils are connected to a 40	0 V, three phase, 50 Hz			
suj	apply. Determine the total active power for:				
4.1.1	Star-connected load.	(8)			
4.1.2	Delta-connected load	(6)			
4.2 The input power to a three-phase motor was measured by the two wattmeter method. The					
rea	eadings were 7.2 kW and 2.7 kW, the reverse switch being	operated on the meter			
indicating the 2.7 kW reading and the line voltage was 425 V. Calculate:					
4.2.1	The total active power.	(2)			
4.2.2	The power factor.	(4)			
4.2.3	The line current.	(2)			
4.3 Tv	wo wattmeters are connected to measure the input power to a bala	inced three-phase load. If			
the	e wattmeter readings are 9.3 kW and 5.4 kW determine:				
4.3.1	The total output power.	(2)			
4.3.2	The load power factor.	(4)			

Question 5	Three Phase Induction Machines	[20 marks]			
5.1 A three-phase induction motor is wound for 4 poles and is supplied from a 50 Hz system.					
Calculate:					
5.1.1 The synchro	nous speed.	(2)			
5.1.2 The speed of	f the rotor when the slip is 4 per cent.	(2)			
5.1.3 The rotor fre	equency.	(2)			
5.2 A 480-V, 50 Hz, 50-hp, three phase induction motor is drawing 40 A at 0.88 PF lagging.					
The stator copp	per losses are 2.2 kW, and the rotor copper losses are	400 W. The friction			
and windage l	osses are 350 W, the core losses are 600 W, and	the stray losses are			
negligible. Find the following quantities:					
5.2.1 The air-gap	power PAG.	(4)			
5.2.2 The power c	converted Pconv.	(2)			
5.2.3 The output p	power Pout.	(2)			
5.2.4 The efficience	cy of the motor.	(2)			
5.3 Name 4 methods of starting a three phase induction motor. (4					

The End

→