

PROGRAM : BACHELOR OF ENGINEERING TECHNOLOGY

ENGINEERING: ELECTRICAL

SUBJECT : **DIGITAL TECHNOLOGY B1**

<u>CODE</u> : DIGELB1

<u>DATE</u> : SUPPLEMENTARY EXAMINATION

January 2020

DURATION : 3 HOURS

<u>WEIGHT</u> : 40:60

ASSESSOR : Mr. V Rameshar

MODERATOR : Mr. D.R. Van Niekerk

NUMBER OF PAGES : PAGES 4

FULL MARKS : 100 = 100%

INSTRUCTIONS TO STUDENTS

- 1. ATTEMPT ALL QUESTIONS. 100 marks = 100%
- 2. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 3. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 4. ALL DIAGRAMS AND SKETCHES MUST BE LABELED CLEARLY.
- 5. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 6. NOTE: MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.

QUESTION 1 – All working out must be shown

1.1	Multiply the following two binary numbers and give your answer in octal. $55_{10} \times 11_{10}$	(5)	
1.2	Divide 306 ₈ by B ₁₆	(5)	
1.3	Utilise binary arithmetic add $2F_{16}$ from 70_8 .	(4)	
1.4	Utilise binary arithmetic to subtract F_{16} from 30_{10}	(4)	
		[18]	
QUES	STION 2		
2.1	Explain the term 'retriggerable one-shot' and show the result on a timing diagram.	(3)	
2.2	Sketch the 5 main logic gate circuit's that you have studied in Digital Technology (5)		
2.3	Design and Sketch a one-time, using a 555 timer that will produce a pulse. ($C_1 = 1~\mu F$)).5s output (3)	
		[11]	
QUESTION 3			

3.1 With the aid of a sketch show how a synchronous counter differ from an asynchronous counter.

(4)

3.2 Design a synchronous 3-bit up counter to produce the following binary sequence. 0, 1, 2, 3, 4,5,6,7 .Use J-K flip-flops and K maps. All steps must be shown.

(8)

3.3 Sketch a four-bit parallel adder and show its operation by adding 2- four bit binary numbers.

(8)

[20]

QUESTION	4
	_

4.1 Sketch the logic circuit diagram for a mod 10 Johnson counter. (5) 4.2 What is the storage capacity of a register that can retain two bytes of data? (1) 4.3 Calculate how many bits is 1Gigabyte of data. (1) 4.4 A mod-10 twisted ring counter requires a minimum of: Ten flip-flops Five flip-flops b) Four flip-flops c) Twelve flip-flops (1) d) 4.5 Why are shift registers considered as basic memory devices? (1) Name four types of shift registers? 4.6 (4) [13]

QUESTION 5

- 5.1 Define the following terms with reference to TTL circuits:
 - 5.1.1 Noise immunity
 - 5.1.2 Power dissipation
 - 5.1.3 Fan-out
 - 5.1.4 Current Source
 - 5.1.5 Propagation delay time.

(10)

- 5.2 Explain the terms current sinking and current sourcing with an appropriate labelled TTL circuit diagram. (6)
- 5.3 Interface utilizes combinational logic circuits and encoder decoder realization. Explain with necessary diagram a BCD to 7-segment display decoder. Show how the number 5 would be display by utilizing the 7-segment truth table. (8)

[24]

QUESTION 6

- 6.1 Sketch a 4 to 1 multiplexer circuit. Clearly label the sketch.
- 6.2 Sketch the logic symbol for a full-subtractor and provide an appropriate truth table.

(8)

(6)

[14]

TOTAL MARKS = 100