

PROGRAM	:	BACHELOR OF ENGINEERING TECHNOLOGY [BEng Tech] IN ELECTRICAL ENGINEERING. B6ELEQ & B6ELXQ
MODULE	:	CONTROL SYSTEMS ENGINEERING 3B
<u>CODE</u>	:	CTLELB3
<u>DATE</u>	:	SUMMER SUPPLEMENTARY EXAMINATION JANUARY 2020
DURATION	:	3 HOURS
<u>WEIGHT</u>	:	40 : 60
NQF	:	7
<u>TOTAL MARKS</u>	:	100
EXAMINER	:	PROF THOKOZANI C SHONGWE
MODERATOR	:	J. SEBASTIAN
NUMBER OF PAGES	:	4 PAGES, INCLUDING 1 FORMULAE SHEET
INSTRUCTIONS	:	CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT) USE ONLY THE ANSWER SHEET PROVIDED WITH THIS PAPER

INSTRUCTIONS TO CANDIDATES:

- 1. 100 MARKS = 100%
- 2. ATTEMPT ALL QUESTIONS.
- 3. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 4. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF QUESTION MUST BE KEPT TOGETHER.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 6. ALL DIAGRAMS AND SKETCHES MUST BE LABELLED CLEARLY.
- 7. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 8. NOTE: MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.
- 9. NEGATIVE MARKING APPLIES IF YOUR ANSWER DOES NOT COMPLY WITH THE DETAIL REQUIRED AS REQUESTED IN CERTAIN QUESTIONS.

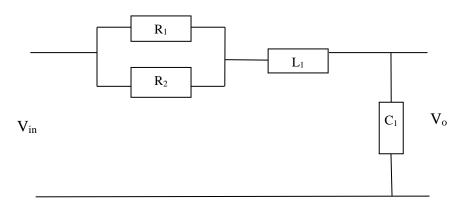
QUESTION 1

Formulate the transfer function of the diagram above, using Mason's Rule.

QUESTION 2

A network has a transfer function of

$$G(p) = \frac{1}{p^2 + 6p + 62}$$


Formulate the transient response of the network to a step input of 10 Volts and express the output as a function of time.

<u>[13]</u>

QUESTION 3

Consider the passive network below and:

- (a) Formulate the transfer function of the passive network below in terms of R₁, R₂, L₁ and C₁. (16)
- (b) Formulate the transient response $V_o(t)$ of the network if it is subjected to $V_i(t)$ which is a *unit step* input, if $R_1 = 2 k\Omega$, $R_2 = 2 k\Omega$, $C_1 = 0.1 \mu F$ and $L_1 = 10 \text{ mH}$. (24)
- (c) Formulate the transient response $V_o(t)$ of the network if it is subjected to $V_i(t)$ which is a *unit impulse* input, if $R_1 = 3 \text{ k}\Omega$, $R_2 = 1.5 \text{ k}\Omega$, $C_1 = 100 \text{ nF}$ and $L_1 = 10 \text{ mH}$. (27)

[67]

TOTAL MARKS : 100

Laplace Transforms

TIME FUNCTION f(t)	LAPLACE FUNCTION F(p)
Unit impulse	1
Unit step	$\frac{1}{p}$
Unit ramp	$\frac{1}{p^2}$
Unit parabolic	$\frac{1}{p^3}$
Exponential (e ^{-at})	$\frac{1}{p+a}$
Sinusoidal $(sin(\omega t))$	$\frac{\omega}{p^2 + \omega^2}$
Co-sinusoidal $(cos(\omega t))$	$\frac{p}{p^2 + \omega^2}$
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{\left(p+a\right)^n}$
$e^{-at}sin(\omega t)$	$\frac{\omega}{\left(p+a\right)^2+\omega^2}$
$e^{-at}cos(\omega t)$	$\frac{p+a}{\left(p+a\right)^2+\omega^2}$