

PROGRAM	:	NATIONAL DIPLOMA ENGINEERING: CIVIL
<u>SUBJECT</u>	:	TRANSPORTATION ENGINEERING III
CODE	:	CET 3211
DATE	:	November 2019
DURATION	:	(SESSION)
<u>WEIGHT</u>	:	40:60
TOTAL MARKS	:	100
ASSESSOR	:	MR HOSANA H NDLOVU (M-TECH: CIVIL ENGINEERING)
MODERATOR	:	MRS TJ RIKHOTSO (M-TECH: CIVIL ENGINEERING)
NUMBER OF PAGES	:	4 PAGES
INSTRUCTIONS	:	ONLY ONE POCKET CALCULATOR PER CANDIDATE ANSWER ALL QUESTIONS
<u>REQUIREMENTS</u>	:	

MAIN EXAMINATION

Scenario

You have been appointed as a consulting engineer for the City of Tshwane Metropolitan Municipality in Gauteng Province. As the project engineer in a roads project, you must oversee the planning, design and construction of a 3km road that links Meyerspark and Die Wilgers. The road will serve as a link between the two suburbs and will also ensure safe travel for commuters and school children who travel from Meyerspark to attend school in Die Wilgers. Furthermore, the road is used by trucks which travel from Meyerspark to collect newly built cars from Ford SA in Silverton and deliver them to a storage warehouse in Die Wilgers. The vehicle plant and all related economic activities within Meyerspark and Silverton are the main source of employment for many of the residents in the area. The project area is not environmentally sensitive.

The common truck that is used by the freight company to transport the newly built cars is the Mercedes Benz Actros 2837 (30 tons). You must prepare a written report to the Divisional Head (Mr Thabo Lebepe) of the Roads & Transport Department in the municipality explaining some aspects of the design and construction.

The known technical information that you have collected thus far is shown below:

Distance of Road	3km	Average Daily temperature	33°C
Annual Rainfall	612mm	Available Material Quality	G8
Mercedes Benz Actros	34 000kg carried on 4 axles	Pedestrian Traffic volumes	1500 people/per day
distribution mass on truck	25%:25%:25%:25%	Annual Traffic Increase	4%
Design life of road	20	Geology	Silverton Shale
n	4	Peak surface flow	2.51m ³ /s
CBR value (in-situ)	6	Road Width	8.5m
CBR value (Base)	80	CBR value (Subbase)	40
g	9,81m/s ²	CBR value (Selected)	20

Question 1

- 1.1 With the aid of a sketch, illustrate to the Divisional Head the typical pavement structure of the flexible pavement that you have designed. ⁽⁰⁵⁾
- 1.2 Briefly explain to Mr Lebepe the methodology that you will use when preparing for the roadbed on site during construction. ⁽⁰⁶⁾
- 1.3 What are the factors that you will consider when conducting the road design pavement? (06)
- 1.4 Explain to the Divisional Head what empirical designs are. (08)

Question 2

- 2.1 Briefly explain to the Divisional Head the functions of a sub-base. ⁽⁰⁵⁾
- 2.2 Explain in detail, to the Divisional Head, what a reinforced concrete pavement is. ⁽⁰⁸⁾
- 2.3 Describe to the Mr Lebepe the concept of "Pavement Structural Balance". (10)
- 2.4 Explain to the Divisional Head why a road surface is wetted before placing concrete. (02)

Question 3

- 3.1 Illustrate to the Divisional Head the correct axle loads in KN by drawing a neat basic sketch of the design truck.⁽⁰⁵⁾
- 3.2 Compute the number of equivalent E80 axle loads on each axle of the truck and the equivalent E80s for the whole truck thereof.⁽⁰⁷⁾
- 3.3 There will be 10 such trucks each doing 2 trips per hour per direction on the new 3km section of road. A working day is 12 hours. Calculate the daily equivalent traffic (E80s) at the start of operations (AADEINITIAL).⁽⁰⁴⁾

/25/

/25/

/25/

3.4 Calculate the design equivalent traffic for the road and state its design traffic class, road category, and climatic region and draw the timeline of the traffic.⁽⁰⁹⁾

Question 4

/25/

- 4.1 The Divisional Head wants to use Cape Seal for surfacing the new road; however, you are the opinion that Hot Mix Asphalt is a better option. List and describe to the Divisional Head any four (04) types of hot mix asphalt. ⁽¹²⁾
- 4.2 Cement stabilisation is used in the sub-base, explain to the Divisional Head the factors that affect strength development in soils that are treated with cement. ⁽⁰⁸⁾
- 4.3 List any 4 of some common stabilising agents in the industry and recommend one that you think is suitable for your design. ⁽⁰⁵⁾

TOTAL = 100 Marks

USEFUL FORMULAE

•
$$F = \left(\frac{P}{80}\right)^n$$

• $g_x = \left(1 + \frac{i}{100}\right)^x$
• $g_x = \left(1 + \frac{i}{100}\right)^x$
• $ADE = ADT \cdot F$
• $ADE = ADT \cdot F$
• $E80_{INITAL} = AADE \cdot g_x$
• $fy = \frac{365*(1 + \frac{i}{100})^*\left[\left(1 + \frac{i}{100}\right)^y - 1\right]}{\frac{i}{100}}$
• $fy = \frac{365*(1 + \frac{i}{100})^*\left[\left(1 + \frac{i}{100}\right)^y - 1\right]}{\frac{i}{100}}$
• $F = \frac{BD}{LD} \quad CF = \frac{LD}{CD} \quad SF = \frac{BD}{CD} \quad CF = \frac{LV}{LV} \quad BF = \frac{LV}{BV} \quad SF = \frac{CV}{BV}$
• $J = \frac{P}{WA} \quad J = Distributor speed (m/s)$
• $PWOC = C + M_1 (1 + r)^{-x_1} + M_2 (1 + r)^{-x_2} \dots - S (1 + r)^{-2}$
• $M_B = \frac{M_A*P_B}{100 - P_B} \qquad M_{ADJ} = \frac{h_A*M_1}{h_B}$
 $S = S_F * CF$
 $CF = 965 h^{-1.655}$
 $ADE = \sum tj * Fj$
 $E80_{TOTAL} = \frac{AADE_{END}}{g_x} * f_y$

•
$$F = C' - A$$

• $W_{ABS} = 100 \times \frac{M_2 - M_4}{M_4}$ $BD_{MIX} = \left(\frac{(\rho_{W} - M_4)}{(M_{2EF} - M_{3EF}) - 1000 \frac{(M_{2EF} - M_{3EF})}{BD_{EF}}}\right)$

Class	sification of pavement	TABLE 4	tructural design purposes			
Pavement	Pavement design	Volume and type of traffic**				
class*	bearing capacity (million 80 kN axles/lane)	Approximate v.p.d. per lane***	Description			
ES0.003	< 0,003	< 3	Very lightly trafficked roads; very few			
ES0.01	0,003 - 0,01	3 - 10	heavy vehicles. These roads could			
ES0.03	0,01 - 0,03	10 - 20	paved roads and may incorporate			
ES0.1	0,03 - 0,10	· 20 - 75	semi-permanent and / or all weather			
ES0.3	0,10 - 0,30	75 - 220	surfacings.			
ES1	0,3 - 1	220 - 700	Lightly trafficked roads, mainly cars, light delivery and agriculture vehicles; very few heavy vehicles.			
ES3,	1 - 3	> 700	Medium volume of traffic; few heavy vehicles.			
ES10	3 - 10	> 700****	High volume of traffic and / or many heavy vehicles.			
ES30	10 - 30	> 2200****	Very high volume of traffic and / or a			
ES100	30 - 100	> 6500****	high proportion of fully laden heavy vehicles.			

CET3211 November 2019 Main Examination

TA Subgrade CBR classi	BLE 16		ictu	ral de	sian		
Class		Subgrade CBR (%)					
SG1		> 15					
SG2		7 to 15					
SG3		3 to 7					
\$G4		<	3*				
Current typical ranges of total E (modified Road Category	d from TRH1 A		-	c	D		
	A	В		<u>c</u>	<u>D</u>		
Range of growth rates (%)	2 - 12	2 - 12	2	- 10	2 - 15		
Typical growth rates (%)	4	4	Longer Long	4			
Design factors for distribut among l	TABLE 9 ion of total tra ianes and sho		quival	ent traffic			
Total number of traffic lanes	Design distribution factor, B, or B						
(Both directions)		Surfaced Lan slow shoulder		Lane 2	Lane 3		
(a) Equivalent traffic (E80s) Factor B	1,00			0.30	_		

1,00 0,70

0,30

_

0,40

0,50

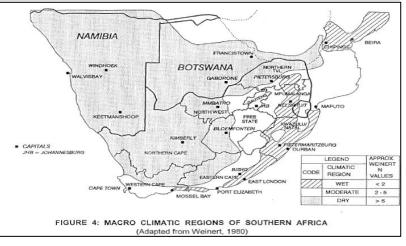
0,50

1,00

0,70**

0,30**

(b) Traffic (total axles e.v.u)***Factor B


2

4 6

TABLE 22 Preparation of subgrade/roadbed and required selected layers for

the different subg	rade design (CBRs (Catego	ries A, B, C a	ind D)
Subgrade CBR Class	SG4	SG3	SG2	SG1
Design CBR of subgrade	< 3	3 - 7	7 - 15	> 15
Add selected layers: Upper Lower	Not applicable	150 mm G7 150 mm G9	150 mm G7 —	
Treatment of in situ subgrade	Special treatment required	Rip and re- compact to 150 mm G10	Rip and re- compact to 150 mm G9	Rip and re- compact to 150 mm G7

If the in situ subgrade is expected to be very wet, or in wet regions (Section 6), an additional 150 mm layer of G9 or a pioneer layer (CSRA, 1987) could be used.

Pavement types		Road category and traffi								Brief reasons why listed pavement types are not
Base	Subbase	A		В			C and D			recommended for the given
	Subbase	ES100	ES3	ES10	ES3	ES1	ES3	ES1	<es0.3< th=""><th>road category and traffic class</th></es0.3<>	road category and traffic class
Granular	Granular Cemented	××	5	11	1	11	11	1	11	Uncertain behaviour
Hot-mix asphalt	Granular Cemented	1	1	1	1	×××	1	××	× ×	Cost effectiveness Cost effectiveness
Cemented	Granular Cemented	× ×	× ×	×	×	×	×	×		Fatigue cracking, crushing, pumping and rocking blocks Shrinkage cracks unacceptabl
Only where e	ended for wet regi experience has pro		adequate							