$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$
Faculty of Science

## DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS <br> MODULE MAT3A20/MAT02A3 <br> DISCRETE MATHEMATICS <br> CAMPUS APK <br> EXAM JUNE 2019

Date 08/06/2019
Session 08:30-11:00
Examiner
Dr W Morton
External Examiner
Duration 150 Minutes

SURNAME AND INITIALS: $\qquad$

Student number: $\qquad$
Tel No.: $\qquad$

## INSTRUCTIONS:

1. The paper consists of $\mathbf{1 2}$ printed pages, excluding the front page.
2. Read the questions carefully and answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
5. Non-programmable calculators are allowed.

## Question 1

Let $A=\{\emptyset,\{1,2\}\}$ and $B=\{1,2\}$. Complete the following:
(a) $A \cap B=$
(b) $\mathscr{P}(A)=$
(c) $A \times B=$
(d) $A-(A-B)=$

Question 2
Let $S$ be the set of all finite strings of $a$ 's and $b$ 's (i.e., $S=\{a, b, a a, a b, b a, b b, a a a, \ldots\}$ ) and define $d: S \rightarrow \mathbb{Z}$ as follows, for $s \in S$,

$$
\begin{equation*}
d(s)=\text { number of } a \text { 's minus the number of } b \text { 's in } s \tag{1}
\end{equation*}
$$

(a) Is $d$ injective? Explain.
(b) Is $d$ surjective? Explain.
(c) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that $f d: S \rightarrow \mathbb{Z}$ is surjective. Is $f$ surjective? Explain. (1)

Question 3
$\overline{\text { Let }} \equiv_{5} \subseteq \mathbb{Z} \times \mathbb{Z}$ be the relation of having the same remainder after division with 5 .
(a) Is $[18]_{\equiv_{5}}=[23]_{\equiv_{5}}$ ? Explain.
(b) Complete: $\mathbb{Z} / \equiv_{5}=$
(c) Show that $\equiv_{5}$ is transitive.

Question 4
$\overline{\text { Let } A, B}$ and $C$ be sets. Prove that $(A-B)-C=A-(B \cup C)$.

## Question 5

(a) Complete the truth-table:

| $p$ | $q$ | $r$ | $\neg(p \leftrightarrow \neg r)$ | $\neg p \vee(q \wedge r)$ | $r \rightarrow q$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T |  |  |  |
| T | T | F |  |  |  |
| T | F | T |  |  |  |
| T | F | F |  |  |  |
| F | T | T |  |  |  |
| F | T | F |  |  |  |
| F | F | T |  |  |  |
| F | F | F |  |  |  |

(b) A set $\mathcal{S}$ of propositional formulas is said to be independent if, and only if, for every formula $F \in \mathcal{S}, F$ is not a logical consequence of $\mathcal{S}-\{F\}$. Is $\{\neg(p \leftrightarrow \neg r), \neg p \vee(q \wedge r), r \rightarrow q\}$ independent? Motivate.

Question 6
Consider the following conditional statement: There are as many rational numbers as there are irrational numbers only if the set of all irrational numbers is infinite.
(a) Rephrase the statement in the form "_ is necessary for __".
(b) State the converse of the implication.

## Question 7

Determine whether or not the following formula is a tautology using a semantic tableaux.

$$
((p \wedge q) \rightarrow r) \rightarrow((p \rightarrow r) \vee(q \rightarrow r))
$$

Question 8
$\overline{\text { Make use of }}$ known equivalences to construct a formula in conjunctive normal form (CNF) equivalent to the following formula:

$$
((p \vee q) \rightarrow \neg r) \rightarrow \neg(\neg q \wedge r)
$$

## Question 9

(a) How many nonnegative integer solutions does $x_{1}+x_{2}+x_{3}=12$ have?
(b) How many integer solutions does $x_{1}+x_{2}+x_{3}=12$ have, if $0 \leq x_{i} \leq 5$ for $i=1,2,3$ ?

Question 10


Question 11
Let $X=\{a, b, c, d, e, f, g, h\}$ and $Y=\{1,2,3,4,5,6,7,8,9\}$.
(a) How many injective functions are there from $X$ to $Y$ ? Explain.
(b) How many injective functions are there from $Y$ to $X$ ? Explain.

Question 12 [6]
Consider the recurrence relation $a_{n}=4 a_{n-1}+(-1)^{n}$ for $n>0$ with initial conditions $a_{0}=1$. Solve the recurrence relation using generating functions.

Question 13
(a) Draw the complete graph $K_{5}$ of order 5 .
(b) What is $K_{5}$ 's size?
(c) $\chi\left(K_{5}\right)=$
(d) Prove that $K_{5}$ is nonplanar.
(e) Formulate the 5-colour theorem.
(f) Hence, does the converse of the 5-colour theorem hold? Explain.

Question 14
Consider the graph $G$ depicted below and answer the questions that follow:

(a) Is $G$ Eulerian? If so, find an Eulerian circuit. If not, explain why not.
(b) Determine whether or not the graph $G$ is planar. If yes, draw it as a plane graph. If not, use Kuratwoski's theorem to prove that it is not.

Recall that $G$ is the graph depicted below:

(c) Is $G$ bipartite? If so, give the two partite sets; if not, explain why not.
(d) The girth of a graph is the length of its shortest cycle. Find the girth of $G$.

Use Dijkstra's algorithm to calculate the shortest path from $v_{1}$ to $v_{5}$ in the following graph:


Prove that every connected graph has a spanning tree.

