UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS MODULE MAT3A20/MAT02A3 DISCRETE MATHEMATICS

CAMPUS APK

EXAM JUNE 2019

Date 08/06/2019 Examiner External Examiner Duration 150 Minutes Session 08:30 – 11:00 Dr W Morton Dr R Kellerman 70 Marks

SURNAME	AND	INITIALS:

STUDENT NUMBER:_____

Tel No.: _____

INSTRUCTIONS:

- 1. The paper consists of **12** printed pages, **excluding** the front page.
- 2. Read the questions carefully and answer all questions.
- 3. Write out all calculations (steps) and motivate all answers.
- 4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
- 5. Non-programmable calculators are allowed.

<u>Question 1</u> Let $A = \{\emptyset, \{1, 2\}\}$ and $B = \{1, 2\}$. Complete the following:	[4]
(a) $A \cap B =$	(1)
(b) $\mathscr{P}(A) =$	(1)
(c) $A \times B =$	(1)
(d) $A - (A - B) =$	(1)

Let S be the set of all finite strings of a's and b's (i.e., $S = \{a, b, aa, ab, ba, bb, aaa, ...\}$) and define $d: S \to \mathbb{Z}$ as follows, for $s \in S$,

d(s) = number of a's minus the number of b's in s.

(a) Is d injective? Explain.

(b) Is d surjective? Explain.

(c) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function such that $fd : S \to \mathbb{Z}$ is surjective. Is f surjective? Explain. (1)

[4]

(1)

(2)

[4]

(b) Complete: $\mathbb{Z}/_{\equiv_5} =$	_(1)
(c) Show that \equiv_5 is transitive.	(2)

Question 4 Let A, B and C be sets. Prove that $(A - B) - C = A - (B \cup C)$.

$\mathrm{EXAM}-8 \ \mathrm{JUNE} \ 2019$

Question 5

(a) Complete the truth-table:

p	q	r	$\neg (p \leftrightarrow \neg r)$	$\neg p \lor (q \land r)$	$r \rightarrow q$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

(b) A set S of propositional formulas is said to be **independent** if, and only if, for every formula $F \in S$, F is not a logical consequence of $S - \{F\}$. Is $\{\neg(p \leftrightarrow \neg r), \neg p \lor (q \land r), r \rightarrow q\}$ independent? Motivate. (2)

Question 6

Consider the following conditional statement: There are as many rational numbers as there are irrational numbers only if the set of all irrational numbers is infinite.

(a) Rephrase the statement in the form "___ is necessary for __". (1)

(b) State the converse of the implication.

[2]

[4]

(2)

Determine whether or not the following formula is a tautology using a semantic tableaux.

 $((p \land q) \to r) \to ((p \to r) \lor (q \to r)).$

Question 8

Make use of known equivalences to construct a formula in conjunctive normal form (CNF) equivalent to the following formula:

 $((p \lor q) \to \neg r) \to \neg(\neg q \land r).$

[4]

[3]

[4]

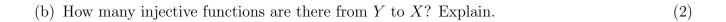
(a) How many nonnegative integer solutions does $x_1 + x_2 + x_3 = 12$ have? (1)

(b) How many integer solutions does $x_1 + x_2 + x_3 = 12$ have, if $0 \le x_i \le 5$ for i = 1, 2, 3? (3)

<u>Question 10</u> Determine the coefficient of $x^6y^6z^2$ in the expansion of $(2x^2 + 3y^3 - z)^7$.

$$\frac{\text{Question 11}}{\text{Let } X = \{a, b, c, d, e, f, g, h\} \text{ and } Y = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$
[4]

(a) How many injective functions are there from
$$X$$
 to Y ? Explain. (2)



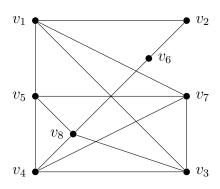
[2]

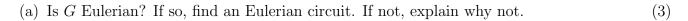
Question 12 Consider the recurrence relation $a_n = 4a_{n-1} + (-1)^n$ for n > 0 with initial conditions $a_0 = 1$. Solve the recurrence relation using generating functions.

$\frac{\text{Question 13}}{\text{(a) Draw the complete graph } K_5 \text{ of order 5.}}$	[7] (1)
(b) What is K_5 's size?	(1)
(c) $\chi(K_5) =$	(1)
(d) Prove that K_5 is nonplanar.	(2)
(e) Formulate the 5-colour theorem.	(1)

(f) Hence, does the converse of the 5-colour theorem hold? Explain. (1)

Consider the graph G depicted below and answer the questions that follow:

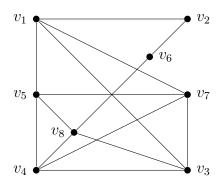




(b) Determine whether or not the graph G is planar. If yes, draw it as a plane graph. If not, use Kuratwoski's theorem to prove that it is not. (3)

[10]

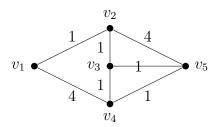
Recall that G is the graph depicted below:



(c) Is G bipartite? If so, give the two partite sets; if not, explain why not. (2)

(d) The **girth** of a graph is the length of its shortest cycle. Find the girth of G. (2)

Use Dijkstra's algorithm to calculate the shortest path from v_1 to v_5 in the following graph:



[3]

 $\frac{\text{Question 16}}{\text{Prove that every connected graph has a spanning tree.}}$

[5]