

DEPARTMENT OF MATHEMATICS

COURSE: MAT2A20

EXAMINATION

DATE: AUGUST 2019

Examiner: Dr. E. Joubert
Moderator: Dr. F. Schultz

Student number:
Surname and initials: \qquad

MARKS	$\%$

Contact tel. number: \qquad

1. This paper consists of 7 pages.
2. Answer each question in its allocated space. If necessary, use the back of the page and indicate that clearly.
3. Only non-programmable calculators are allowed.
4. You have to show your calculations.

QUESTION 1
1.1 Let V be the set of positive, non-zero real numbers, and consider the following addition and scalar multiplication operations on V :

$$
u+v=u v \text { and } k u=u^{k} .
$$

Answer the following questions:
1.1.1 Define what is meant by a vector space W.
1.1.2 Find the zero vector $\overline{0}$ for V, under the given operations.
1.1.3 Using Question 1.1.2, find the vector $-u$, such that $(-u)+u=\overline{0}$ and $u+(-u)=\overline{0}$.
1.1.5 If we change the addition operation in V to normal real number addition, will V still be a vector space? Motivate your answer.
1.1.6 Define what is meant by a subspace W of V.
1.1.7. Let W be the set of rational numbers (recall that a rational number x is a number that can be written in the form $\frac{a}{b}$, where $b \neq 0$ and a and b are integers). Is W a subspace of V ? Motivate your answer.
1.2 Define what is meant by the null space of a matrix A.
1.3 Show that the solution set of a homogenous system $A \bar{x}=\overline{0}$ in n unknowns is a subspace of R^{n}.
1.4 Consider the following matrix A, where s is an unknown. Answer the following questions:

$$
A=\left[\begin{array}{lll}
1 & 1 & s \\
1 & s & 1 \\
s & 1 & 1
\end{array}\right]
$$

1.4.1 Find the values of s for which the null space of A is the origin only.
1.4.2 Find the values of s for which the null space of A will be a line through the origin.
1.4.3 Find the values of s for which the null space of A will be a plane through the origin.
1.4.4 If $s=1$, find a base for the null space of A, and the dimension of the null space of A.
1.4.5 If $s=0$, find a basis for the row space of A, and a basis for the column space of A.

QUESTION 2

2.1 Let V be the space spanned by $f_{1}=\sin x$ and $f_{2}=\cos x$. Answer the following questions: 2.1.1 Define what is meant if we say that $\left\{f_{1}, f_{2}\right\}$ spans V.
2.1.2 Define what is meant if we say that a set S is a basis for V.
2.1.3 Show that for any value of $\theta, g_{1}=\sin (x+\theta)$ and $g_{2}=\cos (x+\theta)$ are vectors in V.
2.1.4 Can one say that $1 \in \operatorname{span}\left(\left\{f_{1}, f_{2}\right\}\right)$? Motivate your answer.
2.1.5 Show that $g_{1}=2 \sin x+\cos x$ and $g_{2}=3 \cos x$ form a basis for V.
2.1.7 Find the transition matrix $P_{B^{\prime} \rightarrow B}$.
2.1.8 Compute the coordinate vector $[h]_{B}$, where $h=2 \sin x-5 \cos x$. Using Question 2.1.4, compute $[h]_{B^{\prime}}$.
2.3 Consider the set $S=\{1,1+x, 2-x,-2+4 x, x\}$ of polynomials. Answer the following Questions: 2.3.1 Explain why S cannot be a basis for P_{2}.
2.3.2 Find $\operatorname{span}(S)$ in P_{3}.
2.3.3 Extend the set $S^{\prime}=\{x+1,2-x\}$ to be a base for P_{3}.

