

DEPARTMENT OF MATHEMATICS

COURSE: MAT2A20

EXAMINATION

DATE: AUGUST 2019

TIME: 90 min MARKS: 52

Examiner: Dr. E. Joubert **Moderator**: Dr. F. Schultz

Student number:	MARKS	%
Surname and initials:		
		<u> </u>
Contact tel. number:		

- 1. This paper consists of 7 pages.
- 2. Answer each question in its allocated space. If necessary, use the back of the page and indicate that clearly.
- 3. **Only** non-programmable calculators are allowed.
- 4. You **have** to show your calculations.

QUESTION 1 1.1 Let V be the set of positive, non-zero real numbers, and consider the following addition scalar multiplication operations on V :	[27] and
$u + v = uv$ and $ku = u^k$.	
Answer the following questions: $1.1.1$ Define what is meant by a vector space W .	[2]
1.1.2 Find the zero vector $\overline{0}$ for V , under the given operations.	[2]
1.1.3 Using Question 1.1.2, find the vector $-u$, such that $(-u) + u = \overline{0}$ and $u + (-u) = \overline{0}$.	[2]
1.1.4 Is V a vector space? Motivate your answer.	[4]

1.1.5 If we change the addition operation in V to normal real number addition, will V still vector space? Motivate your answer.	ll be a [2]
1.1.6 Define what is meant by a subspace W of V .	[1]
1.1.7. Let W be the set of rational numbers (recall that a rational number x is a number the be written in the form $\frac{a}{b}$, where $b \neq 0$ and a and b are integers). Is W a subspace of V? Moyour answer.	
1.2 Define what is meant by the null space of a matrix A .	[1]
1.3 Show that the solution set of a homogenous system $A\overline{x} = \overline{0}$ in n unknowns is a subsp \mathbb{R}^n .	pace of [3]

[1]

1.4 Consider the following matrix A, where s is an unknown. Answer the following questions:

$$A = \left[\begin{array}{ccc} 1 & 1 & s \\ 1 & s & 1 \\ s & 1 & 1 \end{array} \right],$$

1.4.1 Find the values of s for which the null space of A is the origin only.

1.4.2 Find the values of s for which the null space of A will be a line through the origin. [1]

1.4.3 Find the values of s for which the null space of A will be a plane through the origin. [1]

1.4.4 If s = 1, find a base for the null space of A, and the dimension of the null space of A. [2]

1.4.5 If s = 0, find a basis for the row space of A, and a basis for the column space of A. [3]

2.1 Let V be the space spanned by $f_1 = \sin x$ and $f_2 = \cos x$. Answer the following questions: 2.1.1 Define what is meant if we say that $\{f_1, f_2\}$ spans V. [1]

2.1.2 Define what is meant if we say that a set S is a basis for V. [1]

2.1.3 Show that for any value of θ , $g_1 = \sin(x + \theta)$ and $g_2 = \cos(x + \theta)$ are vectors in V. [2]

2.1.4 Can one say that $1 \in span(\{f_1, f_2\})$? Motivate your answer. [2]

2.1.5 Show that $g_1 = 2\sin x + \cos x$ and $g_2 = 3\cos x$ form a basis for V. [2]

2.1.6 Find the transition matrix $P_{B\to B'}$, where $B=\{f_1,f_2\}$ and $B'=\{g_1,g_2\}$. [2]

2.1.7 Find	l the	transition	matrix	$P_{DI \rightarrow D}$
2.1.1 IIII	t uiic	or corresponding	111000117	$-\mathbf{B}' \longrightarrow \mathbf{B}'$

[2]

2.1.8 Compute the coordinate vector $[h]_B$, where $h = 2\sin x - 5\cos x$. Using Question 2.1.4, compute $[h]_{B'}$.

 $2.2~\mathrm{State}$ and prove the Plus / Minus Theorem.

[4]

2.3 Consider the set $S = \{1, 1+x, 2-x, -2+4x, x\}$ of polynomials. Answer the following Questions: 2.3.1 Explain why S cannot be a basis for P_2 . [2]

2.3.2 Find span(S) in P_3 . [3]

2.3.3 Extend the set $S' = \{x + 1, 2 - x\}$ to be a base for P_3 . [2]