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INSTRUCTIONS:

1. The paper consists of 11 printed pages, excluding the front page.

2. Read the questions carefully and answer all questions.

3. Write out all calculations (steps) and motivate all answers.

4. Questions are to be answered on the question paper in the space provided. Please indicate
when the blank side of a page is used.

5. Good luck - write well :-)
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Question 1 [4]

State the following theorems:

(a) The Bolzano-Weierstrass Theorem. (2)

(b) The Location of Roots Theorem. (2)
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Question 2 [4]

True or false (if true: give a short motivation; if false, give a counterexample):

(a) If (In) = ([an, b)) is a nested sequence of bounded intervals, then we know that there exists
x ∈

⋂∞
n=1 In. (2)

(b) If f is continuous on A ⊆ R then f is uniformly continuous on A. (2)
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Question 3 [4]

Prove that R is uncountable.
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Question 4 [5]

Determine inf S and supS in full detail if S =
{

n−m2

n+m
: n,m ∈ N

}
.
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Question 5 [5]

State and prove the Monotone Convergence Theorem for decreasing sequences.
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Question 6 [4]

Establish the convergence or divergence of the following sequences in full detail:

(a)
(

n!
n+1

)
(2)

(b)
(
3n+4
2n+1

)
(2)
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Question 7 [4]

Prove or disprove that (xn) is Cauchy, using the definition of Cauchy, if

xn =

(
(−1)n(1−

√
n)√

n + 1

)
.
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Question 8 [4]

Consider the function f(x) = 1
x(x+2)

.

Show, using the definition of continuity, that f is continuous on (−2, 0).
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Question 9 [6]

Let f(x) = 1√
x
.

(a) State the Continuous Extension Theorem. (2)

(b) Hence, establish whether or not f is uniformly continuous on (0, 3], in full detail. (3)

(c) Is f Lipschitz on (0, 3]? Explain. (1)
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Question 10 [5]

Prove the theorem: let I = [a, b] be a closed bounded interval and f : I → R continuous on
I. Then f is bounded on I.



MAT3A01/MAT01A3 EXAM — 23 MAY 2019 11/11

Question 11 [5]

Consider the function f(x) = 1
x−1 .

(a) Determine whether or not f is continuous on (1,∞). (2)

(b) Show that f is not uniformly continuous on (1,∞), by making use of the Nonuniform
Continuity Criterion. (3)


