Faculty of Science

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 MODULE MAT3A01 / MAT01A3
 REAL ANALYSIS
 CAMPUS APK
 EXAM MAY 2019

Date 23/05/2019
Session 08:30-11:30
Assessor
Dr G Braatvedt

External Moderator
Dr L Lindeboom
Duration 3 Hours

Surname and initials:
Student number:

Tel No.:

INSTRUCTIONS:

1. The paper consists of $\mathbf{1 1}$ printed pages, excluding the front page.
2. Read the questions carefully and answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
5. Good luck - write well :-)

Question 1

State the following theorems:
(a) The Bolzano-Weierstrass Theorem.
(b) The Location of Roots Theorem.

Question 2

True or false (if true: give a short motivation; if false, give a counterexample):
(a) If $\left(I_{n}\right)=\left(\left[a_{n}, b\right)\right)$ is a nested sequence of bounded intervals, then we know that there exists $x \in \bigcap_{n=1}^{\infty} I_{n}$.
(b) If f is continuous on $A \subseteq \mathbb{R}$ then f is uniformly continuous on A.

Prove that \mathbb{R} is uncountable.

Question 4

Determine $\inf S$ and $\sup S \underline{\text { in full detail }}$ if $S=\left\{\frac{n-m^{2}}{n+m}: n, m \in \mathbb{N}\right\}$.

State and prove the Monotone Convergence Theorem for decreasing sequences.

Question 6

Establish the convergence or divergence of the following sequences in full detail:
(a) $\left(\frac{n!}{n+1}\right)$
(b) $\left(\frac{3 n+4}{2 n+1}\right)$

Prove or disprove that $\left(x_{n}\right)$ is Cauchy, using the definition of Cauchy, if

$$
x_{n}=\left(\frac{(-1)^{n}(1-\sqrt{n})}{\sqrt{n}+1}\right) .
$$

Question 8

Consider the function $f(x)=\frac{1}{x(x+2)}$.
Show, using the definition of continuity, that f is continuous on $(-2,0)$.

Question 9

Let $f(x)=\frac{1}{\sqrt{x}}$.
(a) State the Continuous Extension Theorem.
(b) Hence, establish whether or not f is uniformly continuous on $(0,3]$, in full detail.
(c) Is f Lipschitz on $(0,3]$? Explain.

Prove the theorem: let $I=[a, b]$ be a closed bounded interval and $f: I \rightarrow \mathbb{R}$ continuous on I. Then f is bounded on I.

Consider the function $f(x)=\frac{1}{x-1}$.
(a) Determine whether or not f is continuous on $(1, \infty)$.
(b) Show that f is not uniformly continuous on $(1, \infty)$, by making use of the Nonuniform Continuity Criterion.

