University of Johannesburg

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS

MODULE MAT3A01 / MAT01A3
REAL ANALYSIS

CAMPUS APK

EXAM MAY 2019

Date 23/05/2019 Session 08:30 - 11:30

Assessor Dr G Braatvedt

External Moderator Dr L Lindeboom

Duration 3 Hours 50 Marks

SURNAME AND INITIALS:

STUDENT NUMBER:

Tel No.:

INSTRUCTIONS:

- 1. The paper consists of **11** printed pages, **excluding** the front page.
- 2. Read the questions carefully and answer all questions.
- 3. Write out all calculations (steps) and motivate all answers.
- 4. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
- 5. Good luck write well :-)

[4]

Question 1

State the following theorems:

(a) The Bolzano-Weierstrass Theorem. (2)

(b) The Location of Roots Theorem.

(2)

Question 2 [4]

True or false (if true: give a short motivation; if false, give a counterexample):

(a) If $(I_n) = ([a_n, b))$ is a nested sequence of bounded intervals, then we know that there exists $x \in \bigcap_{n=1}^{\infty} I_n$.

(b) If f is continuous on $A \subseteq \mathbb{R}$ then f is uniformly continuous on A. (2)

Question 3 [4]

Prove that \mathbb{R} is uncountable.

Question 4

[5]

Determine inf S and $\sup S$ in full detail if $S = \left\{ \frac{n-m^2}{n+m} : n, m \in \mathbb{N} \right\}$.

Question 5 [5]

State and prove the $Monotone\ Convergence\ Theorem$ for decreasing sequences.

Question 6

[4]

Establish the convergence or divergence of the following sequences <u>in full detail</u>:

(a)
$$\left(\frac{n!}{n+1}\right)$$

(2)

(b) $\left(\frac{3n+4}{2n+1}\right)$

(2)

Question 7 [4]

Prove or disprove that (x_n) is Cauchy, using the definition of Cauchy, if

$$x_n = \left(\frac{(-1)^n (1 - \sqrt{n})}{\sqrt{n} + 1}\right).$$

[4] ${\bf Question}~8$

Consider the function $f(x) = \frac{1}{x(x+2)}$. Show, using the definition of continuity, that f is continuous on (-2,0).

Question 9

[6]

Let $f(x) = \frac{1}{\sqrt{x}}$.

(a) State the Continuous Extension Theorem.

(2)

(3)

(b) Hence, establish whether or not f is uniformly continuous on (0,3], in full detail.

(c) Is f Lipschitz on (0,3]? Explain.

(1)

Question 10 [5]

Prove the theorem: let I=[a,b] be a closed bounded interval and $f:I\to\mathbb{R}$ continuous on I. Then f is bounded on I.

Question 11 [5]

Consider the function $f(x) = \frac{1}{x-1}$.

(a) Determine whether or not f is continuous on $(1, \infty)$.

(b) Show that f is not uniformly continuous on $(1, \infty)$, by making use of the *Nonuniform Continuity Criterion*. (3)