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Question 1
For questions (1.1) - (1.5), please circle only ONE correct answer: [5]

(1.1) Given the series:

A :=
∞∑

m=1

(−1)m

m0.1
and B :=

∞∑
m=1

(−1)m
2m

m100
.

Determine whether each series is convergent or divergent. (1)

(a) A is convergent, B is divergent.

(b) A is divergent, B is convergent.

(c) The series are both convergent.

(d) The series are both divergent.

(1.2) If a series
∑
an is conditionally convergent, then limn→∞ |an| 6= 0. (1)

(a) True (b) False

(1.3) The Root Test can be used to determine whether the series
∑
en
(
1 + 1

n

)−n2

converges. (1)

(a) True (b) False

(1.4) Suppose that the series
∑∞

n=0 cn(x− 2)n converges when x = 4 and diverges when x = −4.
What can be said about the convergence or divergence of the following series: (1)

C :=
∞∑
n=0

cn(−1)n and D :=
∞∑
n=0

cn7n.

(a) C is convergent, D is divergent.

(b) C is divergent, D is convergent.

(c) The series are both convergent.

(d) The series are both divergent.

(1.5) A power series representation and radius of convergence for f(x) = 1
4+x2 is: (1)

(a)
∑∞

n=0
(−1)nx2n

4n+1 ; R = 1.

(b)
∑∞

n=0
x2n

4n
; R = 1.

(c)
∑∞

n=0
x2n

4n+1 ; R = 2.

(d)
∑∞

n=0
(−1)nx2n

4n+1 ; R = 2.
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Question 2 [4]

Show that the lim
n→∞

3n2 + 1

4n2 + 1
=

3

4
by using the precise definition of a limit of a sequence.
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Question 3 [2]
Give an example of two divergent sequences {an} and {bn} such that the sequence {anbn} is
convergent.
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Question 4 [4]

Let a1 =
√

3 and let an+1 =
√

3an for n ∈ N. Show that {an} is increasing and bounded above by
3, and find its limit.
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Question 5
Test the following series for convergence or divergence: [5]

(5.1)
∑∞

n=1(−1)n (n!)n

n3n (3)

(5.2)
∑∞

n=1
cos 2n
1+3n

(2)
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Question 6
State and prove the Alternating Series Test. [4]
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Question 7
Find a Maclaurin series for the given function: [3]

f(x) =


1−cosx

x2 if x 6= 0

1
2

if x = 0.
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Question 8
Use the binomial series series to expand f and state its radius of convergence: [4]

f(x) = (1− x)
2
3 .
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Question 9

Determine r(t) if r′(t) =
〈

1
1+t2

, cos2 t, tet
2
〉

and r(0) = 〈1, 0, 1〉. [3]
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Question 10
Reparametrize the curve with respect to arc length measured from the point where t = 0 in the
direction of increasing t: [4]

r(t) = 〈2 sin t, 4, 2 cos t〉 .

Question 11
State the definition of the curvature of a smooth curve C. [2]
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Question 12
Show that if there is a c ∈ R such that |r(t)| = c for all t, then r′(t) is orthogonal to r(t). [2]
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Question 13
Prove that the curvature of a curve C with vector function r(t) is given by the following formula:[4]

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

.
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Question 14
A particle moves with position function

r(t) =
〈
t3, 1− t2, t+ 7

〉
.

Determine the normal component of the accelaration of the particle. [4]
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