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Question 1
For questions (1.1) - (1.5), please circle only ONE correct answer: [5]

(1.1) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

∞∑
k=1

(−1)k arctan k

k5
.

Select the correct answer. (1)

(a) divergent

(b) absolutely convergent

(c) conditionally convergent

(1.2) Determine the sum of the series: 3 +
9

2!
+

27

3!
+

81

4!
+ . . . (1)

(a) 1− e3 (b) e3 − 1 (c) e3 (d) e3

2
(e) e3

3
.

(1.3) Find the Maclaurin series expansion of x cos(4x). (1)

(a)
∞∑
n=0

(−1)n42nx2n+1

n!

(b)
∞∑
n=0

(−1)n42nx2n+1

(2n)!

(c)
∞∑
n=0

(−1)n42nx2n

(2n)!

(d)
∞∑
n=0

(−1)n+142nx2n+1

(2n!)

(1.4) Let C be a smooth curve defined by a vector function r with tangent vector T, binormal
vector B and normal vector N. Then the following statements are true : (1)

(i) T ⊥ T′ (ii) T ⊥ B (iii) B ⊥ N

(a) i, ii, & iii (b) only i & ii (c) only ii & iii (d) only i & iii

(1.5) Find limt→∞ r(t), where r(t) = 〈arctan t, e−7t, ln t
t
〉. (1)

(a) 〈π, 0, 0〉.
(b) 〈π

2
, 0, 0〉.

(c) 〈0, 0, 0〉.
(d) 〈1, 1, 0〉.
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Question 2

Show that lim
n→∞

n2 + n

2n2 + 1
=

1

2
by using the precise definition of a limit of a sequence. [4]
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Question 3 [5]
(3.1) Suppose that

∑
an and

∑
bn are infinite series with positive terms and that

∑
bn is

divergent. Prove that if

lim
n→∞

an
bn

=∞,

then
∑
an is also divergent. (2)

(3.2) Use part (3.1), or otherwise, to show that the series
∞∑
n=1

lnn

n
is divergent. (3)
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Question 4

Prove the following: If limn→∞ |an|1/n = L < 1, then the series
∑∞

n=1 an is absolutely convergent. [4]
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Question 5
Prove that

ln(5− x) = ln 5− 1

5

∞∑
n=0

xn+1

5n(n+ 1)

and determine the radius of convergence for this series. [5]
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Question 6 [5]

(6.1) Use the binomial series to expand (4)

f(x) =
4
√

1 + x6.

(6.2) Find the radius of convergence of the series in (6.1). (1)
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Question 7
Use power series to evaluate [4]

lim
x→∞

cos(x2)− 1

x4
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Question 8
Let r(t) be a vector given by [3]

r(t) = 〈tan
1

t
,
2t− 1

3t+ 1
, te−2t〉.

(8.1) Find the domain of r(t). (2)

(8.2) Evaluate lim
t→∞

r(t). (1)
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Question 9
Let C be a smooth curve. [8]

(9.1) Prove that the curvature (4)

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

.

(9.2) Find the curvature of r(t) = 〈
√

15t, et, sin(t)〉 at (0, 1, 0) . (4)
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Question 10
Find the velocity, acceleration and speed of a particle with the position function: [3]

r(t) = cos(−2t)̂ı + sin(−2t)̂, at t = 0.

Describe the path of the particle.
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Question 11
At what point do the curves r(t) = 〈t, 1− t, 3 + t2〉 and u(s) = 〈3− s, s− 2, s2〉 intersect? Find
their angle of intersection. [4]
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