

DEPARTMENT OF PURE AND APPLIED MATHEMATICS		
MODULE	MAT01A2 / MAT2A10 Sequences, Series and Vector Calculus	
CAMPUS ASSESSMENT	APK EXAMINATION	
DATE: 06/06/2019		TIME: 08:30
ASSESSOR(S)		M. SIAS
INTERNAL MODERATOR		C. MARAIS
DURATION: 120	MINUTES	MARKS: 50
SURNAME AND	INITIALS	
STUDENT NUMBER		
CONTACT NUMBER		
NUMBER OF PAGES: 1 + 11 PAGES		
INSTRUCTIONS:		
1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.		

- 2. CALCULATORS ARE ALLOWED.
- 3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
- 4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE <u>FACING</u> BLANK PAGE AND INDICATE THIS CLEARLY.

Question 1

For questions (1.1) - (1.5), please circle only **ONE** correct answer:

(1.1) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{k=1}^{\infty} \frac{(-1)^k \arctan k}{k^5}.$$

Select the correct answer.

- (a) divergent
- (b) absolutely convergent
- (c) conditionally convergent

(1.2) Determine the sum of the series: $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$ (1)

- (a) $1 e^3$ (b) $e^3 1$ (c) e^3 (d) $\frac{e^3}{2}$ (e) $\frac{e^3}{3}$.
- (1.3) Find the Maclaurin series expansion of $x \cos(4x)$.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n+1}}{(2n)!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n} x^{2n}}{(2n)!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2n} x^{2n+1}}{(2n!)}$$

(1.4) Let C be a smooth curve defined by a vector function \mathbf{r} with tangent vector \mathbf{T} , binormal vector \mathbf{B} and normal vector \mathbf{N} . Then the following statements are true : (1)

(i) $\mathbf{T} \perp \mathbf{T}'$ (ii) $\mathbf{T} \perp \mathbf{B}$ (iii) $\mathbf{B} \perp \mathbf{N}$ (a) i, ii, & iii (b) only i & ii (c) only ii & iii (d) only i & iii

(1.5) Find $\lim_{t\to\infty} \overline{\mathbf{r}}(t)$, where $\overline{\mathbf{r}}(t) = \langle \arctan t, e^{-7t}, \frac{\ln t}{t} \rangle$.

- (a) $\langle \pi, 0, 0 \rangle$.
- (b) $\langle \frac{\pi}{2}, 0, 0 \rangle$.
- (c) $\langle 0, 0, 0 \rangle$.
- (d) $\langle 1, 1, 0 \rangle$.

[5]

(1)

(1)

(1)

Question 2

Show that $\lim_{n \to \infty} \frac{n^2 + n}{2n^2 + 1} = \frac{1}{2}$ by using the precise definition of a limit of a sequence.

[4]

Question 3 (3.1) Suppose that $\sum a_n$ and $\sum b_n$ are infinite series with positive terms and that $\sum b_n$ is divergent. Prove that if

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$$

then $\sum a_n$ is also divergent.

(3.2) Use part (3.1), or otherwise, to show that the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is divergent. (3)

(2)

Question 4 Prove the following: If $\lim_{n\to\infty} |a_n|^{1/n} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. [4]

 $\frac{\textbf{Question 5}}{\text{Prove that}}$

$$\ln(5-x) = \ln 5 - \frac{1}{5} \sum_{n=0}^{\infty} \frac{x^{n+1}}{5^n(n+1)}$$

and determine the radius of convergence for this series.

[5]

Question 6

 $(6.1)\,$ Use the binomial series to expand

 $f(x) = \sqrt[4]{1+x^6}.$

 $(6.2)\,$ Find the radius of convergence of the series in (6.1).

(1)

$\frac{\textbf{Question 7}}{\text{Use power series to evaluate}}$

[4]

$$\lim_{x \to \infty} \frac{\cos(x^2) - 1}{x^4}$$

$\frac{\textbf{Question 8}}{\text{Let } \overline{\mathbf{r}}(t) \text{ be a vector given by}}$

$$\overline{\mathbf{r}}(t) = \langle \tan \frac{1}{t}, \frac{2t-1}{3t+1}, te^{-2t} \rangle.$$

(8.1) Find the domain of $\overline{\mathbf{r}}(t)$.

(8.2) Evaluate $\lim_{t\to\infty} \overline{\mathbf{r}}(t)$.

(2)

[3]

(1)

 $\frac{\textbf{Question 9}}{\text{Let } C \text{ be a smooth curve.}}$

(9.1) Prove that the curvature

$$\kappa(t) = \frac{|\mathbf{\bar{r}}'(t) \times \mathbf{\bar{r}}''(t)|}{|\mathbf{\bar{r}}'(t)|^3}.$$

(9.2) Find the curvature of $\overline{\mathbf{r}}(t) = \langle \sqrt{15}t, e^t, \sin(t) \rangle$ at (0, 1, 0).

(4)

 $\frac{\textbf{Question 10}}{\text{Find the velocity, acceleration and speed of a particle with the position function:}$

$$\overline{\mathbf{r}}(t) = \cos(-2t)\hat{\mathbf{i}} + \sin(-2t)\hat{\mathbf{j}}, \quad \text{at } t = 0.$$

[3]

Describe the path of the particle.

Question 11 At what point do the curves $\overline{\mathbf{r}}(t) = \langle t, 1-t, 3+t^2 \rangle$ and $\overline{\mathbf{u}}(s) = \langle 3-s, s-2, s^2 \rangle$ intersect? Find their angle of intersection. [4]