

SURNAME AND INITIALS \qquad

STUDENT NUMBER \qquad

CONTACT NUMBER \qquad

NUMBER OF PAGES: 1 + 11 PAGES

INSTRUCTIONS:

1. ANSWER ALL THE QUESTIONS ON THE PAPER IN PEN.
2. CALCULATORS ARE ALLOWED.
3. SHOW ALL CALCULATIONS AND MOTIVATE ALL ANSWERS.
4. IF YOU REQUIRE EXTRA SPACE, CONTINUE ON THE FACING BLANK PAGE AND INDICATE THIS CLEARLY.

For questions (1.1) - (1.5), please circle only ONE correct answer:
(1.1) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(-1)^{k} \arctan k}{k^{5}} \tag{1}
\end{equation*}
$$

Select the correct answer.
(a) divergent
(b) absolutely convergent
(c) conditionally convergent
(1.2) Determine the sum of the series: $3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\ldots$
(a) $1-e^{3}$
(b) $e^{3}-1$
(c) e^{3}
(d) $\frac{e^{3}}{2}$
(e) $\frac{e^{3}}{3}$.
(1.3) Find the Maclaurin series expansion of $x \cos (4 x)$.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{n!}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}$
(d) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2 n} x^{2 n+1}}{(2 n!)}$
(1.4) Let C be a smooth curve defined by a vector function \mathbf{r} with tangent vector \mathbf{T}, binormal vector \mathbf{B} and normal vector \mathbf{N}. Then the following statements are true:
(i) $\mathbf{T} \perp \mathbf{T}^{\prime}$
(ii) $\mathbf{T} \perp \mathbf{B}$
(iii) $\mathbf{B} \perp \mathbf{N}$
(a) i, ii, \& iii
(b) only i \& ii
(c) only ii \& iii
(d) only i \& iii
(1.5) Find $\lim _{t \rightarrow \infty} \overline{\mathbf{r}}(t)$, where $\overline{\mathbf{r}}(t)=\left\langle\arctan t, e^{-7 t}, \frac{\ln t}{t}\right\rangle$.
(a) $\langle\pi, 0,0\rangle$.
(b) $\left\langle\frac{\pi}{2}, 0,0\right\rangle$.
(c) $\langle 0,0,0\rangle$.
(d) $\langle 1,1,0\rangle$.

Question 2

Show that $\lim _{n \rightarrow \infty} \frac{n^{2}+n}{2 n^{2}+1}=\frac{1}{2}$ by using the precise definition of a limit of a sequence.
(3.1) Suppose that $\sum a_{n}$ and $\sum b_{n}$ are infinite series with positive terms and that $\sum b_{n}$ is divergent. Prove that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty \tag{2}
\end{equation*}
$$

then $\sum a_{n}$ is also divergent.
(3.2) Use part (3.1), or otherwise, to show that the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ is divergent.

Question 4

Prove the following: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent. [4]

Question 5
Prove that

$$
\begin{equation*}
\ln (5-x)=\ln 5-\frac{1}{5} \sum_{n=0}^{\infty} \frac{x^{n+1}}{5^{n}(n+1)} \tag{5}
\end{equation*}
$$

and determine the radius of convergence for this series.
(6.1) Use the binomial series to expand

$$
f(x)=\sqrt[4]{1+x^{6}}
$$

(6.2) Find the radius of convergence of the series in (6.1).

Question 7

Use power series to evaluate

$$
\lim _{x \rightarrow \infty} \frac{\cos \left(x^{2}\right)-1}{x^{4}}
$$

Question 8

$\overline{\text { Let }} \overline{\mathbf{r}}(t)$ be a vector given by

$$
\begin{equation*}
\overline{\mathbf{r}}(t)=\left\langle\tan \frac{1}{t}, \frac{2 t-1}{3 t+1}, t e^{-2 t}\right\rangle . \tag{2}
\end{equation*}
$$

(8.1) Find the domain of $\overline{\mathbf{r}}(t)$.
(8.2) Evaluate $\lim _{t \rightarrow \infty} \overline{\mathbf{r}}(t)$.

Question 9

Let C be a smooth curve.
(9.1) Prove that the curvature

$$
\begin{equation*}
\kappa(t)=\frac{\left|\overline{\mathbf{r}}^{\prime}(t) \times \overline{\mathbf{r}}^{\prime \prime}(t)\right|}{\left|\overline{\mathbf{r}}^{\prime}(t)\right|^{3}} . \tag{4}
\end{equation*}
$$

(9.2) Find the curvature of $\overline{\mathbf{r}}(t)=\left\langle\sqrt{15} t, e^{t}, \sin (t)\right\rangle$ at $(0,1,0)$.

Find the velocity, acceleration and speed of a particle with the position function:

$$
\overline{\mathbf{r}}(t)=\cos (-2 t) \hat{\mathbf{\imath}}+\sin (-2 t) \hat{\mathbf{j}}, \quad \text { at } t=0 .
$$

Describe the path of the particle.

Question 11

$\overline{\text { At what point }}$ do the curves $\overline{\mathbf{r}}(t)=\left\langle t, 1-t, 3+t^{2}\right\rangle$ and $\overline{\mathbf{u}}(s)=\left\langle 3-s, s-2, s^{2}\right\rangle$ intersect? Find their angle of intersection.

