

INSTRUCTIONS TO CANDIDATES:

- Answer ALL questions.
- This is a closed book assessment.
- Leave margins and spaces between the questions.
- Show all your calculations.
- Unless otherwise indicated, express your answers correct to two (2) decimal places.
- Where appropriate, indicate the units of your answer. (e.g. Hour, R)
- Number your answers clearly.
- Write neatly and legibly
- NOTE: Marks are awarded for theoretical knowledge, application of the theory and use of relevant examples.
The general University of Johannesburg policies, procedures and rules pertaining to written assessments apply to this assessment.

QUESTION 1

1.1. Discuss the main disadvantages of simulation
1.2. What is the difference between Dynamic Programming and Linear Programming?
1.3. What is the difference between natural and controllable causes? Provide 2 examples for each.
1.4. Discuss the four categories of cost associated with quality

QUESTION 2

You are going to help a friend who is working in a garage, where he repair car brakes. You have observed the following pattern in 7 repairs he did during a day:

Repair number	Minute pr. repair	No. of trips to toolbox
1	50	5
2	34	2
3	43	4
4	56	6
5	38	4
6	49	5
7	36	3

2.1. Construct a scatter diagram based upon the observed data.

QUESTION 3

Khumalo has been hand-painting wooden Christmas ornaments for several years. Recently, she has hired some friends to help her increase the volume of her business. In checking the quality of the work, she notices that some slight blemishes occasionally are apparent. A sample of 10 pieces of work resulted in the following number of blemishes on each piece: $4,1,2,0,0,1,2,0,0$, and 0 .
3.1. Construct the upper and lower control limits chart for the number of blemishes on each piece.

QUESTION 4

Dr. Kabelo practices dentistry in Soweto. Kabelo does his best to schedule appointments so that patients do not have to wait beyond their appointment time. His November 11, 2019 schedule is shown in the following table:

Schedule appointment and time		Expected time needed
Nkosi	9:30 д.м.	15
Lerato	9:45 д.м.	20
Kamo	10:15 А.м.	15
Mabasa	10:30 A.м.	10
Matamba	10:45 A.м.	30
Ndlovu	11:15 А.м.	15
Mulongo	11:30 A.м.	20
Mabuza	11:45 А.м.	15

Unfortunately, not every patient arrives exactly on schedule, and expected times to examine patients are just thatexpected. Some examinations take longer than expected, and some take less time.

Kabelo's experience dictates the following:
(a) 20% of the patients will be 20 minutes early.
(b) 10% of the patients will be 10 minutes early.
(c) 40% of the patients will be on time.
(d) 25% of the patients will be 10 minutes late.
(e) 5% of the patients will be 20 minutes late.

He further estimates that
(a) 15% of the time he will finish in 20% less time than expected.
(b) 50% of the time he will finish in the expected time.
(c) 25% of the time he will finish in 20% more time than expected.
(d) 10% of the time he will finish in 40% more time than expected.

Dr. Kabelo has to leave at 12:15 P.M. on November 11 to catch a flight to a dental convention in Cape Town. Assuming that he is ready to start his workday at 9:30 A.M. and that patients are treated in order of their scheduled exam (even if one late patient arrives after an early one).
4.1. Will he be able to make the flight? Comment on this simulation.

Random numbers have been provided. Therefore, use the following information to conduct the simulation.

Appointment	RN	Arrival time	Time doctor is free	RN	Exam time required	Time exam ends	Number of mins patient exam
Nkosi	69			37			
Lerato	84			77			
Kamo	12			13			
Mabasa	94			10			
Matamba	51			02			
Ndlovu	36			18			
Mulongo	17			31			
Mabuza	02			19			

END OF EXAMINATION

ANNEXURES

Upper control limit (UCL) $=\overline{\bar{x}}+z \sigma_{\bar{x}}$
Upper limit for an \bar{x}-chart using standard deviations.
Lower control limit (UCL) $=\overline{\bar{x}}-z \sigma_{\bar{x}}$
Lower control limit for an \bar{x}-chart using standard deviations.
$\mathbf{U C L}_{\bar{x}}=\overline{\bar{x}}+\boldsymbol{A}_{2} \overline{\boldsymbol{R}}$
Upper control limit for an \bar{x}-chart using tabled values and ranges.
$\mathbf{L C L}_{\bar{x}}=\overline{\bar{x}}-\boldsymbol{A}_{2} \overline{\boldsymbol{R}}$
Lower control limit for an \bar{x}-chart using tabled values and ranges.
$\mathbf{U C L}_{R}=D_{4} \bar{R}$
Upper control limit for a range chart.
$\mathbf{L C L}_{\boldsymbol{R}}=D_{3} \bar{R}$
Lower control limit for a range chart.
$\mathbf{U C L}_{p}=\bar{p}+z \sigma_{p}$
Upper control unit for a p-chart.
$\mathrm{LCL}_{p}=\bar{p}-z \sigma_{p}$
Lower control limit for a p-chart.
$\hat{\sigma}_{p}=\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$
Estimated standard deviation of a binomial distribution.
$\bar{c} \pm 3 \sqrt{\bar{c}}$
Upper and lower limits for a c-chart.

RANDOM NUMBER TABLE

52	06	50	88	53	30	10	47	99	37	66	91	35	32	00	84	57	07
37	63	28	02	74	35	24	03	29	60	74	85	90	73	59	55	17	60
82	57	68	28	05	94	03	11	27	79	90	87	92	41	09	25	36	77
69	02	36	49	71	99	32	10	75	21	95	90	94	38	97	71	72	49
98	94	90	36	06	78	23	67	89	85	29	21	25	73	69	34	85	76
96	52	62	87	49	56	59	23	78	71	72	90	57	01	98	57	31	95
33	69	27	21	11	60	95	89	68	48	17	89	34	09	93	50	44	51
50	33	50	95	13	44	34	62	64	39	55	29	30	64	49	44	30	16
88	32	18	50	62	57	34	56	62	31	15	40	90	34	51	95	26	14
90	30	36	24	69	82	51	74	30	35	36	85	01	55	92	64	09	85
50	48	61	18	85	23	08	54	17	12	80	69	24	84	92	16	49	5
27	88	21	62	69	64	48	31	12	73	02	68	00	16	16	46	13	85
45	14	46	32	13	49	66	62	74	41	86	98	92	98	8	54	33	40
81	02	01	78	82	74	97	37	45	31	9	99	42	49	2	64	89	42
66	83	14	74	27	76	03	33	11	97	59	81	72	00	64	61	13	52
74	05	81	82	93	09	96	33	52	78	13	06	28	30	94	23	37	39
30	34	87	01	74	11	46	82	59	94	25	34	32	23	17	01	58	73
59	55	72	33	62	13	74	68	22	44	42	09	32	46	71	79	45	89
67	09	80	98	99	25	77	50	03	32	36	63	65	75	94	19	95	88
60	77	46	63	71	69	44	22	03	85	14	48	69	13	30	50	33	24
60	08	19	29	36	72	30	27	50	64	85	72	75	29	87	05	75	0
80	45	86	99	02	34	87	08	86	84	49	76	24	08	01	86	29	11
53	84	49	63	26	65	72	84	85	63	26	02	75	26	92	62	40	67
69	84	12	94	51	36	17	02	15	29	16	52	56	43	26	22	08	62
37	77	13	10	02	18	31	19	32	85	31	94	81	43	31	58	33	51

Factors for Computing Control Chart Limits

SAMPLE SIYA, n	MISAN FACTOR, A_{2}	UPPER RANGE, D_{4}	LOWER RANEE, D_{3}
2	1.880	3.268	0
3	1.023	2.574	0
4	0.729	2.282	0
5	0.577	2.114	0
6	0.483	2.004	0
7	0.419	1.924	0.076
8	0.373	1.864	0.136
9	0.337	1.816	0.184
10	0.308	1.777	0.223
12	0.266	1.716	0.284
14	0.235	1.671	0.329
16	0.212	1.636	0.364
18	0.194	1.608	0.392
20	0.180	1.586	0.414
25	0.153	1.541	0.459

