

PROGRAM	:	BACHELOR OF ENGINEERING TECHNOLOGY
		CHEMICAL ENGINEERING
SUBJECT	:	APPLIED THERMODYNAMICS 2B
<u>CODE</u>	:	ATDCHB2
DATE	:	SSA SUMMER EXAMINATION
		JANUARY 2020
DURATION	:	(SESSION X) 3 hours
<u>WEIGHT</u>	:	40: 60
TOTAL MARKS	:	100
FULL MARKS	:	100
EXAMINER	:	Mr G PAHLA and Prof C NARASIGADU
MODERATOR	:	DR R HUBERTS
NUMBER OF PAGES	:	10 PAGES
<u>REQUIREMENTS</u>	:	Use of scientific (non-programmable) calculator is permitted (only one per candidate).

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- **ATTEMPT ALL QUESTIONS**. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you <u>read each question carefully</u> before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' assessment.
- Ensure your responses are <u>legible</u>, <u>clear</u> and <u>include relevant units</u> (where appropriate).

Question One

[Total: 20 marks]

An air-standard Otto cycle has a compression ratio of 9.5. Prior to the isentropic compression process, the air is at 100 kPa, 35 °C, and 600 cm³. The temperature at the end of the isentropic expansion process is 527 °C. Calculate the thermal efficiency for this cycle.

For air; $C_p = 1.005 \text{ kJ/kg} \cdot \text{K}$, $C_v = 0.718 \text{ kJ/kg} \cdot \text{K}$, $R = 0.287 \text{ kJ/kg} \cdot \text{K}$, and $\gamma = 1.4$.

Question Two

A gas turbine draws in air from the atmosphere at 1 bar and 15°C and compresses it to 4.5 bar with an isentropic efficiency of 82%. The air is heated to 1100 K at constant pressure and then expanded through two stages in series back to 1 bar. The high pressure turbine is connected to the compressor and produces just enough power to drive it. The low pressure stage is connected to an external load and produces 100 kW of power. The isentropic efficiency is 85% for both stages. For the compressor $\gamma = 1.4$ and for the turbines $\gamma = 1.3$. The gas constant R is 0.287 kJ/kg K for both.

Neglecting increase in mass during fuel injection, calculate the mass flow of air, the inter-stage pressure of the turbines and the thermal efficiency of the cycle.

Question Three

Steam enters the blade row of an impulse turbine with a velocity of 600 m/s at an angle of 25° to the plane of rotation of the blades. The mean blade speed is 250 m/s. the plant angle at the exit side is 30°. Take the value of k as 0.9. With the aid of Figure 3.1, determine;

 C_{1v}

- 3.1. The blade angle at the inlet. [8]
- 3.2. The work done per kg of steam. [12]

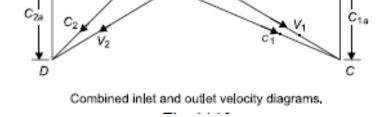


Figure 3.1. Combined inlet and outlet velocity diagram.

[Total: 30 Marks]

[Total: 20 Marks]

Question Four

[Total: 15 Marks]

In a single acting, two-stage reciprocating air compressor 5 kg/min of air is compressed from 1.013 bar and 15 °C through a pressure ratio of 9/1. The compression follows $pV^{1.3}$ = constant and the two stages have the same pressure ratio. The P-V plot is shown in Figure 4.1. If intercooling is complete, calculate the indicated power. Assume that the clearance volumes of both stages are 6 % of their respective swept volumes and that the compressor runs at 300 rev/min.

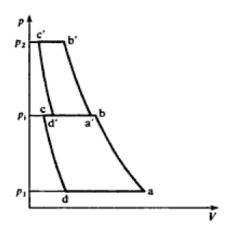


Figure 4.1. Pressure-volume diagram for two-stage reciprocating air compressor.

Question Five

[Total: 15 Marks]

A steady-flow Carnot refrigeration cycle uses refrigerant-134a as the working fluid. The refrigerant changes from saturated vapour to saturated liquid at 30°C in the condenser as it rejects heat. The evaporator pressure is 160 kPa.

5.1. Show the cycle on a T-S diagram relative to saturation lines. [3]

5.2. Determine the coefficient of performance. [4]

5.3. Calculate the net-work input. [8]

END

[Total:100 Marks]

USEFUL EQUATIONS AND FORMULAE

PV = nRT;	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2};$	$v = \frac{v^t}{m};$	$v = \frac{V^t}{n}; \dot{m} = uA$	$ ho;$ $\dot{n} =$	$\frac{uA}{vM};$	$v = v^{-1};$	$\dot{V} = \frac{V}{t}$
$t(^{o}C) = T(K) - 273$	3.15;	$t(^{o}F) = T(R)$	2) – 459.67;		$t(^{o}F) = 1.$	8t(°C) + 32;	
$P_g = \frac{F}{A} = \frac{mg}{A} = \frac{\rho V}{A}$	$\frac{Yg}{A} = \frac{Ah\rho g}{A};$	$P_{abs} = P_g($	$(or\rho gh) + P_{atm}$				
Interpolation:	$M = \left(\frac{X_2 - X}{X_2 - X_1}\right) M_1 +$	$+\left(\frac{X-X_1}{X_2-X_1}\right)M_2$		OR		$M = \frac{M_1(X_2 - X)}{X_2}$	$+M_2(X-X_1)$
$\Delta E_{univ} = \Delta E_{syst} -$	$+\Delta E_{surr}=0;$	1	$\gamma = \frac{W_{irreversible}}{W_{reversible}};$		$\frac{dm_{cv}}{dt} = \Delta$	$m = \dot{m}_{out} - r$	$\dot{n}_{in}; \qquad \gamma = \frac{C_P}{C_V}$
EB for open syster	<u>ms:</u>	<u>d</u>	$\frac{l(mU)_{cv}}{dt} = -\dot{m}\Delta \left[l \right]$	$J + \frac{1}{2}u^2 + g$	$gh\Big] + \dot{Q} -$	+ Ŵ	
EB for steady-state	e flow processes:		$\Delta \dot{m} \left(H + \frac{1}{2}u^2 + g \right)$	$h = \dot{Q} + v$	Ŵ _s		
Mechanically reve	ersible closed system	processes:					
Constant V:		Ç	$Q = n\Delta U = n \int_{T_1}^{T_2} dt$	$C_v dT = nC$	$_{v}\Delta T$		
Constant P:		C	$Q = n\Delta H = n \int_{T_1}^{T_2} dt$	$C_p dT = nC$	$_{p}\Delta T;$	W =	$= -R(T_2 - T_1)$
Constant T:		Ç	$Q = -W = RT_1 \ln t$	$\frac{V_2}{V_1} = -RT_1$	$\ln \frac{P_2}{P_1} = F$	$P_1 V_1 \ln \frac{V_2}{V_1} = -1$	$P_1 V_1 \ln \frac{P_2}{P_1}$
Adiabatic:		$\frac{T}{T}$	$\frac{V_2}{V_1} = \left(\frac{V_1}{V_2}\right)^{R/C_V};$	$\frac{\mathrm{T}_2}{\mathrm{T}_1} = \left(\frac{\mathrm{P}_2}{\mathrm{P}_1}\right)^2$	^R / _{CP} ;	$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{C_P/C}$	v,
Carnot cycle:		r	$q = \frac{W_{net}}{Q_1} = 1 - \frac{Q_2}{Q_1}$	$r=1-\frac{T_2}{T_1}$			
Constant-pressure	(Joule) cycle:	r	$\eta = 1 - \frac{1}{\left(\frac{P_2}{P_1}\right)^{(\gamma-1)/\gamma}}$				
Work ratio:		V	$W = \frac{Net \ work \ out}{Gross \ work \ out}$	$\frac{put}{tput} = 1 - \frac{1}{2}$	$\frac{T_1}{T_3} \left(\frac{P_2}{P_1}\right)^{(\gamma-1)}$	-1)/γ	
Compression ratio):	sweptvolum clear	e + clearancevolum rancevolume	$\frac{e}{\nu_1} = \frac{\nu_1}{\nu_2}$			
Otto cycle:		7	$\gamma = 1 - \frac{1}{\left(\frac{V_1}{V_2}\right)^{\gamma - 1}}$				
Diesel cycle:		r	$\eta = 1 - \left(\frac{T_4 - T_1}{\gamma(T_3 - T_2)}\right)$) OR $\eta =$	$1 - \left(\frac{1}{V_1/V_1}\right)$	$\left(\frac{V_{3}}{V_{2}}\right)^{\gamma-1} \left\{ \frac{(V_{3}/V_{2})^{\gamma}}{\gamma[(V_{3}/V_{2})]^{\gamma}} \right\}$	$\left(\frac{2}{1-1}\right)$
Dual-combustion	cycle:	r	$1 = 1 - \frac{C_{\nu}(T_5 - T_5)}{C_{\nu}(T_3 - T_2) + C_5}$	$\frac{T_1}{T_p(T_4 - T_3)}$			
Mean effective pre	essure (MEP):	-	$-W_{net} = P_m(V_1 -$	- V ₂)			
Stirling and Ericss	son cycles:	$\eta_{Stirling} =$	$\eta_{Ericsson} = \eta_{Ca}$	$_{rnot} = 1 - \frac{1}{2}$	$\frac{T_2}{T_1}$		
Steam rate:		n	$\dot{n} = \frac{\dot{W}_{net}}{W_{net}} = \frac{1}{W_{turbi}}$	W _{net} _{ne} -W _{pump}			
Rankine cycle (pu	mp work input):	V	$W = v_i (P_{i+1} - P_i)$)			
Rankine efficiency	y:	$\eta = \frac{Ne}{Heats}$	t work output supplied in boiler				

$Efficiency ratio = \frac{cycle \ efficiency}{Rankine \ efficiency}$; $ssc = \frac{1}{Net \ work \ output}$; $CHL = ssc(\Delta H_{condenser})$								
Isentropic efficiency:	ratio of work input required actual work required								
Gross work output: work or	utput of HP turbine + work output of LP turbine								
Work ratio:	$W = \frac{Net \ work \ output}{Gross \ work \ output} = 1 - \frac{T_1}{T_3} \left(\frac{P_2}{P_1}\right)^{(\gamma-1)/\gamma}$								
Mass flow rate:	$\dot{m} = \frac{W_{net}}{W_{net}};$ Cycle efficiency: $\eta = \frac{W_{turbine}}{Q_1}$								
For steam turbines: $\Delta C_w = 0$	$C_{wi} + C_{we} = C_{re} \cos \beta_e + C_{ri} \cos \beta_i$								
Velocity coefficient:	$k = \frac{C_{re}}{C_{ri}}$; Driving force: $F_D = \dot{m}\Delta C_w$								
Diagram efficiency:	$\eta_d = \frac{2C_b\Delta C_w}{C_{ai}^2}$; Energy supplied per unit mass of steam $= \frac{1}{2}\dot{m}C_{ai}^2$								
Power output:	$\dot{W}_{output} = \dot{m}C_b\Delta C_w$								
End (Axial) thrust:	$\dot{m}\Delta C_f$; Where: $\Delta C_f = C_{fi} - C_{fe} = C_{ri} \sin \beta_i - C_{re} \sin \beta_e$								
For Nozzles (EB):	$H_1 + \frac{c_1^2}{2} = H_2 + \frac{c_2^2}{2}$								
Critical pressure:	$\frac{P_c}{P_1} = \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)} \text{Critical temperature:} \qquad \frac{T_c}{T_1} = \left(\frac{P_c}{P_1}\right)^{(\gamma-1)/\gamma}$								
Critical specific volume:	$v_c = \frac{(R/M)T_c}{P_c}$ Critical velocity: $C_c = \sqrt{\frac{\gamma RT_c}{M}} = \sqrt{2(H_1 - H_c)} = \sqrt{2C_p(T_1 - T_c)}$								
Exit specific volume:	$v_2 = \frac{(R/M)T_2}{P_2}$ Exit velocity: $C_2 = \sqrt{2(H_1 - H_2)}$								
Mass flowrate per unit area: $\frac{\dot{m}}{A_2} = \frac{C_2}{v_2}$	Nozzle efficiency: $\frac{H_1 - H_2}{H_1 - H_{2s}} = \frac{C_p(T_1 - T_2)}{C_p(T_1 - T_{2s})} = \frac{T_1 - T_2}{T_1 - T_{2s}}$								
Velocity coefficient:	$\frac{C_2}{C_{2s}}$ Coefficient of discharge: $\frac{\dot{m}}{m_s}$								
For dry saturated steam,	$\gamma = 1.135$ For superheated steam, $\gamma = 1.3$								
Refrigeration (Engine efficiency):	$\eta_{carnot} = \frac{W_{netcarnotengine}}{Q_1} = 1 - \frac{T_2}{T_1}$								
Coefficient of Performance: COP _{carr}	$not = \frac{Q_1 refrigerator}{W_{refrigeratorinput}} = \frac{T_2}{T_1 - T_2}$								
Indicated Power: $IP = \frac{n}{n-1} \dot{m}R(T_2 - T_1), IP = \frac{n}{n-1} \dot{m}RT_1\{\left(\frac{p_2}{p_1}\right)^{\frac{(n-1)}{n}} - 1\}, IP = \frac{n}{n-1} \dot{V}p_1\{\left(\frac{p_2}{p_1}\right)^{\frac{(n-1)}{n}} - 1\}$									
Isothermal Power: Isothermal Powe	Isothermal Power: Isothermal Power = $\dot{m}RT \ln \frac{p_2}{p_1}$								
Volumetric Efficiency: $\bigcap_{v} = 1 - \frac{v_c}{v_s} \{ (\frac{1}{v_s}) \}$	$\left(\frac{p_2}{p_1}\right)^{1/n} - 1\}, \cap_v = \frac{V}{V_s}, \frac{FAD}{cycle} = \left(V_a - V_d\right) \frac{T}{T_1} \frac{p_1}{p}$								
Roots Efficiency: $RE = \frac{C_p}{R} \{ \frac{r^{(\gamma-1)\gamma} - 1}{r-1} \}$	Roots Efficiency: $RE = \frac{C_p}{R} \left\{ \frac{r^{(\gamma-1)\gamma} - 1}{r-1} \right\}$								

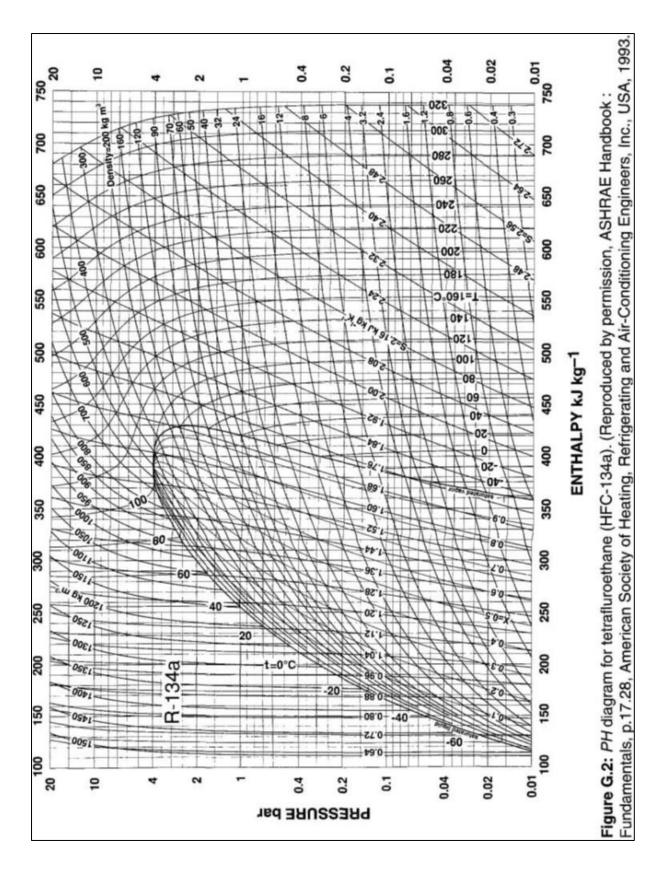

Applied Thermodynamics 2B

	Table A.1: Conversion Factors	Energy	$1 J = 1 kg m^2 s^{-2} = 1 N m$
Quantity	Conversion		$= 1 \text{ m}^3 \text{ Pa} = 10^{-5} \text{ m}^3 \text{ bar} = 10 \text{ cm}^3 \text{ bar}$ = 9.86923 cm ³ (atm)
Length Mass	$\frac{1 \text{ m}}{1 \text{ m}} = 100 \text{ cm}$ = 3.28084(ft) = 39.3701(in) 1 kg = 10 ³ g		= $10^{7}(dyne) \operatorname{cm} = 10^{7}(erg)$ = $0.239006(cal)$ = $5.12197 \times 10^{-3}(ft)^{3}(psia) = 0.737562(ft)(lb_{f})$ = $9.47831 \times 10^{-4}(Btu) = 2.77778 \times 10^{-7} \text{ kWhr}$
Force	= 2.20462(lb _m) $1 N = 1 kg m s^{-2^{m}}$ = $10^{5} (dyne)$ = 0.224809(lb _f)	Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$ = 239.006(cal) s ⁻¹ = 737.562(ft)(lbj) s ⁻¹
Pressure	$1 \text{ bar} = 10^5 \text{ kg m}^{-1} \text{ s}^{-2} = 10^5 \text{ N m}^{-2}$ $= 10^5 \text{ Pa} = 10^2 \text{ kPa}$ $= 10^6 (\text{dyne}) \text{ cm}^{-2}$ $= 0.986923 (\text{atm})$ $= 14.5038 (\text{psia})$	Table	= 0.947831(Btu) s ⁻¹ = 1.34102(hp)
	= 750.061(torr)		
Volume	$1 m^3 = 10^6 cm^3 = 10^3 liters = 35.3147(ft)^3 = 264.172(gal)$	= 83.14 cm = 82.06 cm	$10^{-1} \text{ K}^{-1} = 8.314 \text{ m}^3 \text{ Pa mol}^{-1} \text{ K}^{-1}$ $3^3 \text{ bar mol}^{-1} \text{ K}^{-1} = 8,314 \text{ cm}^3 \text{ kPa mol}^{-1} \text{ K}^{-1}$ $3^3(\text{atm}) \text{ mol}^{-1} \text{ K}^{-1} = 62,356 \text{ cm}^3(\text{torr}) \text{ mol}^{-1} \text{ K}^{-1}$ $10^{-1} \text{ K}^{-1} = 1.986(\text{Btu})(\text{lb mole})^{-1}(\text{R})^{-1}$
Density	$1 \text{ g cm}^{-3} = 10^3 \text{ kg m}^{-3}$ = 62.4278(lb _m)(ft) ⁻³		$^{(3)}(atm)(lb mol)^{-1}(R)^{-1} = 10.73(ft)^{(3)}(psia)(lb mol)^{-1}(R)^{-1}$ $lb_f)(lb mol)^{-1}(R)^{-1}$

Temperati °C	ire K	Saturation pressure MPa	Liquid density kg m ⁻³	Specific volume of vapor m ³ kg-'	Enth kJ k		Entr kJ kg-	
		Р	$ ho^1$	V ^ν	\mathbf{H}^{1}	\mathbf{H}^{ν}	S ¹	S ^v
-40	233.15	0.051 22	1414.8	0.360 95	148.57	374.16	0.7973	1.7649
-30	243.15	0.084 36	1385.9	0.225 96	161.10	380.45	0.8498	1.7519
-26.07 ^b	247.08	0.101 33	1374.3	0.190 16	166.07	382.90	0.8701	1.7476
-24	249.15	0.111 27	1368.2	0.174 10	168.70	384.19	0.8806	1.7455
-22	251.15	0.121 60	1362.2	0.160 10	171.26	385.43	0.8908	1.7436
-20	253.15	0.132 68	1356.2	0.147 44	173.82	386.66	0.9009	1.7417
-18	255.15	0.144 54	1350.2	0.135 97	176.39	387.89	0.9110	1.7399
-16	257.15	0.157 21	1344.1	0.125 56	178.97	389.11	0.9211	1.7383
-14	259.15	0.170 74	1338.0	0.116 10	181.56	390.33	0.9311	1.7367
-12	261.15	0.185 16	1331.8	0.107 49	184.16	391.55	0.9410	1.7351
-10	263.15	0.200 52	1325.6	0.099 63	186.78	392.75	0.9509	1.7337
-8	265.15	0.216 84	1319.3	0.092 46	189.40	393.95	0.9608	1.7323
-6	267.15	0.234 18	1313.0	0.085 91	192.03	393.15	0.9707	1.7310
-4	269.15	0.252 57	1306.6	0.079 91	194.68	396.33	0.9805	1.7297
-2	271.15	0.272 06	1300.2	0.074 40	197.33	397.51	0.9903	1.7285
0	273.15	0.292 69	1293.7	0.069 35	200.00	398.68	1.0000	1.7274
2	275.15	0.314 50	1287.1	0.064 70	202.68	399.84	1.0097	1.7263
4	277.15	0.337 55	1280.5	0.060 42	205.37	401.00	1.0194	1.7252
6	279.15	0.361 86	1273.8	0.056 48	208.08	402.14	1.0291	1.7242
8	281.15	0.387 49	1267.0	0.052 84	210.80	403.27	1.0387	1.7233
10	283.15	0.414 49	1260.2	0.049 48	213.53	404.40	1.0483	1.7224
12	285.15	0.442 89	1253.3	0.046 36	216.27	405.51	1.0579	1.7215
14	287.15	0.472 76	1246.3	0.043 48	219.03	406.61	1.0674	1.7207
16	289.15	0.504 13	1239.3	0.040 81	221.80	407.70	1.0770	1.7199
18	291.15	0.537 06	1232.1	0.038 33	224.59	408.78	1.0865	1.7191
20	293.15	0.571 59	1224.9	0.036 03	227.40	409.84	1.0960	1.7183
24	297.15	0.645 66	1210.1	0.031 89	233.05	411.93	1.1149	1.7169
28	301.15	0.726 76	1194.9	0.028 29	238.77	413.95	1.1338	1.7155
32	305.15	0.815 30	1179.3	0.025 16	244.55	415.90	1.1527	1.7142
36	309.15	0.911 72	1163.2	0.023 10	250.41	417.78	1.1715	1.7129
40	313.15	1.016 5	1146.5	0.019 99	256.35	419.58	1.1903	1.7115
44	317.15	1.130 0	1129.2	0.017 86	262.38	421.28	1.2091	1.7101
48	321.15	1.252 7	1111.3	0.017 98	268.49	422.88	1.2279	1.7086
52	325.15	1.385 2	1092.6	0.013 98	274.71	424.35	1.2468	1.7030
56	329.15	1.528 0	1073.0	0.014 30	281.04	425.68	1.2408	1.7051
60	333.15	1.681 5	1073.0	0.012 80	287.49	425.88	1.2847	1.7031
64	337.15	1.846 4	1032.4	0.011 46	294.08	420.80	1.3039	1.7007
68	341.15	2.023 4	1007.7	0.010 28	300.84	427.84	1.3234	1.6979
72	345.15	2.213 0	983.1	0.009 17	307.79	429.10	1.3430	1.6945
76	349.15	2.415 9	956.5	0.007 28	314.96	429.10	1.3430	1.6905

^b normal boiling point

[†]Reproduced with permission from ASHRAE Handbook: Fundam entals, p. 17.29, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, 1993.

Page **8** of **10**

TABLE	A-13												
Super	rheated ref	rigerant-	134a		_								
Т	v	u	h	s	v	u	h	s	v	u	h	s	
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg-K	
P = 0.06 MPa (T _{sat} = -36.95°C)					P = 0	P = 0.10 MPa (T _{stt} = -26.37°C)				P = 0.14 MPa (T _{sat} = -18.77°C)			
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446	
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721					
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724	
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031	
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93		
20	0.39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624	
30	0.40705	256.95	281.37	1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97		
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70		
50	0.43495	272.64	298.74	1.2191	0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57		
60	0.44883	280.73	307.66	1.2463	0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59		
70	0.46269	288.99	316.75	1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77		
80	0.47651	297.41	326.00	1.2997	0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09		
90	0.49032	306.00	335.42	1.3260	0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57		
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814	
	P = 0.1	18 MPa (7	sat = -12	.73°C)	P = 0	.20 MPa ($T_{sat} = -10$.09°C)	P = 0.24 MPa (T _{sat} = -5.38°C)				
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346	
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380					
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519	
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831	
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134	
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	1.0429	
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	1.0718	
50	0.14230	271.36	296.98	1.1256	0.12766	271.15	296.68	1.1163	0.10570	270.71	296.08		
60	0.14715	279.56	306.05	1.1532	0.13206	279.37	305.78	1.1441	0.10942	278.97	305.23		
70	0.15196	287.91	315.27	1.1805	0.13641	287.73	315.01	1.1714	0.11310	287.36		1.1554	
80	0.15673	296.42	324.63	1.2074	0.14074	296.25	324.40	1.1983	0.11675	295.91	323.93		
90	0.16149	305.07	334.14	1.2339	0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49		
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356	
	P = 0	28 MPa ($T_{\text{sat}} = -1.5$	25°C)	P -	0.32 MPa	$(T_{sat} = 2.4$	6°C)	P = 0).40 MPa	$(T_{sat} = 8.9$	1°C)	
Sat.	0.07235	229.46	249.72	0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269	
0	0.07282	230.44	250.83	0.9362									
10	0.07646	238.27	259.68	0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97	256.58	0.9305	
20	0.07997	246.13	268.52	0.9987	0.06925	245.50	267.66	0.9856	0.054213	244.18	265.86	0.9628	
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796	252.36	275.07	0.9937	
40	0.08672	262.10	286.38	1.0576	0.07530	261.60	285.70	1.0451	0.059292	260.58	284.30	1.0236	
50	0.09000	270.27	295.47	1.0862	0.07823	269.82	294.85	1.0739	0.061724	268.90		1.0528	
60	0.09324	278.56	304.67	1.1142	0.08111	278.15	304.11	1.1021	0.064104	277.32		1.0814	
70	0.09644	286.99	314.00	1.1418	0.08395	286.62	313.48	1.1298	0.066443	285.86		1.1094	
80	0.09961	295.57	323.46	1.1690	0.08675	295.22	322.98	1.1571	0.068747	294.53		1.1369	
90	0.10275	304.29	333.06	1.1958	0.08953	303.97	332.62	1.1840	0.071023	303.32		1.1640	
100	0.10587	313.15	342.80	1.2222	0.09229	312.86	342.39	1.2105	0.073274	312.26		1.1907	
110	0.10897	322.16	352.68	1.2483	0.09503	321.89	352.30	1.2367	0.075504	321.33		1.2171	
120	0.11205	331.32	362.70	1.2742	0.09775	331.07	362.35	1.2626	0.077717	330.55			
130	0.11512	340.63	372.87	1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90		1.2688	
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942	

-	-	-			•
TA	81	F		_1	-
1.0	DL		-		•

Super	heated refri	igerant-1	134a (C	ontinued)								
T ℃	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg·K	v m³/kg	u kJ/kg	h kJ/kg	s kJ/kg-K	v m³/kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg·K
	P = 0.9	50 MPa ()	$T_{sat} = 15.$.71°C)	P = 0	.60 MPa ($T_{sat} = 21.5$	i5°C)	P - 0.70 MPa (T _{et} - 26.69°C)			
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338				0.035984		270.81	0.9499	0.029966	247.48		0.9313
40	0.046456				0.037865	257.86	280.58 290.28	0.9816	0.031696	256.39 265.20		0.9641
50 60	0.048499 0.050485				0.039659 0.041389	266.48 275.15	290.28	1.0121 1.0417	0.033322 0.034875	265.20		0.9954
70	0.052427				0.043069		309.73	1.0705	0.036373	282.87		1.0549
80	0.054331				0.044710	292.73		1.0987	0.037829	291.80		1.0835
90	0.056205	302.51	330.61	1.1436	0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	1.1114
100	0.058053				0.047900	310.73	339.47	1.1536	0.040642	309.95		1.1389
110	0.059880				1		349.59	1.1803	0.042010	319.19		1.1658
120	0.061687				0.050997	329.23	359.82	1.2067	0.043358	328.55		1.1924
130 140	0.063479 0.065256				0.052519 0.054027	338.67	370.18 380.66	1.2327 1.2584	0.044688 0.046004	338.04 347.66		1.2186
150	0.067021				0.055522	357.96	391.27	1.2838	0.040004	357.41		1.2699
160	0.068775				0.057006		402.01	1.3088	0.048597	367.29		1.2951
P = 0.80 MPa (T _{st} = 31.31°C)					P = 0	.90 MPa ($T_{sat} = 35.5$	51°C)	P = 1.00 MPa (T _{sat} = 39.37°C)			
Sat.	0.025621	246.79	267.29	0.9183	0.022683	248.85	269.26	0.9169	0.020313	250.68	270.99	0.9156
40	0.027035	254.82	276.45	0.9480	0.023375	253.13	274.17	0.9327	0.020406	251.30	271.71	0.9179
50	0.028547				0.024809	262.44	284.77	0.9660	0.021796	260.94		0.9525
60	0.029973				0.026146	271.60	295.13	0.9976	0.023068	270.32		0.9850
70	0.031340				0.027413	280.72	305.39	1.0280	0.024261	279.59		1.0160
80	0.032659 0.033941				0.028630	289.86 299.06	315.63 325.89	1.0574	0.025398	288.86		1.0458
90 100	0.033941				0.029806	308.34	325.89	1.0860 1.1140	0.026492	298.15 307.51		1.0748
110	0.036420				0.032068	317.70	346.56	1.1414	0.027552	316.94		1.1308
120	0.037625				0.033164	327.18	357.02	1.1684	0.029592	326.47		1.1580
130	0.038813				0.034241	336.76	367.58	1.1949	0.030581	336.11		1.1846
140	0.039985	347.06	379.05	1.2321	0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143				1	356.28		1.2467	0.032512	355.71		1.2368
160	0.042290				0.037384		399.88	1.2721	0.033457	365.70		1.2623
170	0.043427				0.038408	376.31		1.2972	0.034392	375.81		1.2875
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1.3						T _{set} = 52.4		P = 1.60 MPa (T _{sat} = 57.88°C)			
Sat. 50	0.016715 0.017201				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
60	0.018404				0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	
70	0.019502				0.016060	274.62	297.10	0.9733	0.013430	271.76	293.25	
80	0.020529			1.0248	0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	
90	0.021506				0.017923	294.28	319.37	1.0364	0.015215	292.17		1.0194
100	0.022442				0.018778	304.01	330.30	1.0661	0.016014	302.14		1.0500
110 120	0.023348 0.024228				0.019597 0.020388		341.19 352.09	1.0949 1.1230	0.016773 0.017500	312.07 322.02		1.0795
130	0.024228				0.020388	333.41		1.1230	0.017500	332.02		1.1360
140	0.025927				0.021904		374.01	1.1773	0.018882	342.05		1.1632
150	0.026753				0.022636		385.07	1.2038	0.019545	352.17		1.1900
160	0.027566	364.61	397.69	1.2449	0.023355	363.51		1.2298	0.020194	362.38		1.2163
170	0.028367				0.024061		407.43	1.2554	0.020830	372.69		1.2421
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	1.2676