

PROGRAM	:	BACHELOR OF ENGINEERING TECHNOLOGY
		CHEMICAL ENGINEERING
SUBJECT		APPLIED THERMODYNAMICS 2B
SUDJECT	•	ATTLIED THERWOD INAMICS 2D
CODE	:	ATDCHB2
DATE	:	SUMMER EXAMINATION
		20 NOVEMBER 2019
DURATION	:	(SESSION 1) 8:30 – 11:30
<u>WEIGHT</u>	:	40: 60
TOTAL MARKS	:	100
EXAMINER	:	Mr G PAHLA and Prof C NARASIGADU
MODERATOR	:	DR R HUBERTS
NUMBER OF PAGES	:	13 PAGES
REQUIREMENTS	:	Use of scientific (non-programmable) calculator is permitted
		(only one per candidate).

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- **ATTEMPT** <u>ALL</u> **QUESTIONS**. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number, student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you <u>read each question carefully</u> before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' assessment.
- Ensure your responses are <u>legible</u>, <u>clear</u> and <u>include relevant units</u> (where appropriate).

Question One

[Total: 18 Marks]

- 1.1.A heat engine operating on the carnot cycle with a perfect gas as the working fluid absorbs heat at 500 °C and rejects it at 55 °C. Given that, this engine is producing 350 kJ of work per kilogram of perfect gas, determine the heat supplied. [10]
- 1.2. Represent the heat engine cycle described in Question 1.1 on a clearly labelled P-V plot. [8]

Question Two

[Total: 25 Marks]

Superheated steam at 42 bar and 450 °C is supplied to a high pressure turbine in which it expands until it is dry saturated steam. To improve overall efficiency, it is reheated to the turbine inlet temperature at constant pressure. The now superheated steam expands through a low pressure turbine to 0.1 bar where it is introduced to the condenser. For this cycle (Figure 2.1), calculate;

2.2. Specific steam consumption. [2]

2.3. Cycle efficiency. [5]

Neglect the pump work.

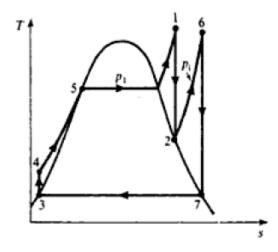


Figure 2.1: Process and T-S diagram for re-heat cycle

Question Three

[Total: 22 marks]

It is required to expand 4.5 kg/s of air from 9.2 bar and 327 °C into a space at 1.38 bar. The aim is to increase the velocity and produce the necessary thrust for propulsion. As part of the preliminary design, you are required to calculate the necessary throat and exit area of a propulsion nozzle to achieve this. The coefficient of discharge and nozzle efficiency are 0.96 and 0.92 respectively.

For air take C_p = 1.005 kJ/kgK , Mw = 29 g/mol and $\,\gamma$ = 1.4

^{2.1.} The Work output. **[18]**

Question Four

[Total: 20 Marks]

A single-stage, double-acting air compressor has a free air delivery of 16 m³/min measured at 1.013 bar and 15 °C. The pressure and temperature in the cylinder during induction are 0.95 bar and 32 °C. The delivery pressure is 8 bar and the index of compression and expansion, n, is equal to 1.25. Calculate the indicated power required and the volumetric efficiency. The clearance volume is 4 % of the swept volume.

Question Five

[Total: 15 Marks]

A practical refrigeration cycle operates between 0.2077 MPa and 1.31 MPa using ammonia as the refrigerant. Dry saturated vapour is delivered to the compressor where it is compressed isentropically and there is no sub-cooling of the condensed liquid.

5.1. Sketch this process on a T-S plot. [5]

5.2. Calculate the refrigerating effect per kg of refrigerant and the COP. [10]

END

[Total: 100 Marks]

USEFUL EQUATIONS AND FORMULAE

 $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}; \qquad v = \frac{V^t}{m}; \qquad v = \frac{v^t}{n}; \dot{m} = uA\rho; \qquad \dot{n} = \frac{uA}{vM}; \qquad \rho = v^{-1}; \qquad \dot{V} = \frac{V}{t}$ PV = nRT; $t(^{o}C) = T(K) - 273.15;$ $t(^{\circ}F) = T(R) - 459.67;$ $t(^{\circ}F) = 1.8t(^{\circ}C) + 32;$ $P_g = \frac{F}{A} = \frac{mg}{A} = \frac{\rho V g}{A} = \frac{A h \rho g}{A}; \qquad P_{abs} = P_g(or \rho gh) + P_{atm}$ OR $M = \frac{M_1(X_2 - X) + M_2(X - X_1)}{X_2 - X_1}$ <u>Interpolation:</u> $M = \left(\frac{X_2 - X}{X_2 - X_1}\right) M_1 + \left(\frac{X - X_1}{X_2 - X_1}\right) M_2$ $\eta = \frac{W_{irreversible}}{W_{reversible}}; \qquad \qquad \frac{dm_{cv}}{dt} = \Delta m = \dot{m}_{out} - \dot{m}_{in}; \qquad \gamma = \frac{C_P}{C_V}$ $\Delta E_{univ} = \Delta E_{syst} + \Delta E_{surr} = 0;$ $\frac{d(mU)_{cv}}{dt} = -\dot{m}\Delta \left[U + \frac{1}{2}u^2 + gh \right] + \dot{Q} + \dot{W}$ EB for open systems: $\Delta \dot{m} \left(H + \frac{1}{2}u^2 + gh \right) = \dot{Q} + \dot{W}_s$ EB for steady-state flow processes: Mechanically reversible closed system processes: $Q = n\Delta U = n \int_{T_1}^{T_2} C_v dT = nC_v \Delta T$ Constant V: $Q = n\Delta H = n \int_{T_{-}}^{T_{2}} C_{p} dT = nC_{p}\Delta T;$ Constant P: $W = -R(T_2 - T_1)$ $Q = -W = RT_1 \ln \frac{V_2}{V_1} = -RT_1 \ln \frac{P_2}{P_1} = P_1 V_1 \ln \frac{V_2}{V_1} = -P_1 V_1 \ln \frac{P_2}{P_1}$ Constant T: $\frac{\mathrm{T}_2}{\mathrm{T}} = \left(\frac{\mathrm{V}_1}{\mathrm{V}}\right)^{\mathrm{R}/\mathrm{C}_{\mathrm{V}}}; \qquad \frac{\mathrm{T}_2}{\mathrm{T}} = \left(\frac{\mathrm{P}_2}{\mathrm{P}}\right)^{\mathrm{R}/\mathrm{C}_{\mathrm{P}}}; \qquad \frac{\mathrm{P}_2}{\mathrm{P}} = \left(\frac{\mathrm{V}_1}{\mathrm{V}}\right)^{\mathrm{C}_{\mathrm{P}}/\mathrm{C}_{\mathrm{V}}};$ Adiabatic: $\eta = \frac{W_{net}}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$ Carnot cycle: $\eta = 1 - \frac{1}{\left(\frac{P_2}{2}\right)^{(\gamma-1)/\gamma}}$ Constant-pressure (Joule) cycle: $W = \frac{Net \ work \ output}{Gross \ work \ output} = 1 - \frac{T_1}{T_3} \left(\frac{P_2}{P_1}\right)^{(\gamma-1)/\gamma}$ Work ratio: $\frac{sweptvolume + clearancevolume}{clearancevolume} = \frac{v_1}{v_2}$ Compression ratio: $\eta = 1 - \frac{1}{\left(\frac{V_1}{U}\right)^{\gamma-1}}$ Otto cycle: $\eta = 1 - \left(\frac{T_4 - T_1}{\gamma(T_2 - T_2)}\right) \quad OR \ \eta = 1 - \left(\frac{1}{V_1 / V_2}\right)^{\gamma - 1} \left\{\frac{(V_3 / V_2)^{\gamma - 1}}{\gamma((V_2 / V_2) - 1)}\right\}$ Diesel cycle: $\eta = 1 - \frac{C_{\nu}(T_5 - T_1)}{C_{\nu}(T_3 - T_2) + C_{\nu}(T_4 - T_3)}$ Dual-combustion cycle: $-W_{net} = P_m(V_1 - V_2)$ Mean effective pressure (MEP): $\eta_{Stirling} = \eta_{Ericsson} = \eta_{Carnot} = 1 - \frac{T_2}{T_1}$ Stirling and Ericsson cycles: $\dot{m} = \frac{\dot{W}_{net}}{W_{net}} = \frac{\dot{W}_{net}}{W_{turbine} - W_{pump}}$ Steam rate: $W = v_i(P_{i+1} - P_i)$ Rankine cycle (pump work input):

ATDCHB2

Rankine efficiency:	$\eta = \frac{\text{Net work output}}{\text{Heat supplied in boiler}}$
$Efficiency ratio = \frac{cycle \ efficiency}{Rankine \ efficiency}$; $ssc = \frac{1}{Net work output}$; $CHL = ssc(\Delta H_{condenser})$
Isentropic efficiency:	ratio of work input required actual work required
Gross work output: work of	utput of HP turbine + work output of LP turbine
Work ratio:	$W = \frac{Net \ work \ output}{Gross \ work \ output} = 1 - \frac{T_1}{T_3} \left(\frac{P_2}{P_1}\right)^{(\gamma-1)/\gamma}$
Mass flow rate:	$\dot{m} = \frac{\dot{W}_{net}}{W_{net}};$ Cycle efficiency: $\eta = \frac{W_{turbine}}{Q_1}$
For steam turbines: $\Delta C_w = 0$	$C_{wi} + C_{we} = C_{re} \cos \beta_e + C_{ri} \cos \beta_i$
Velocity coefficient:	$k = \frac{C_{re}}{C_{ri}}$; Driving force: $F_D = \dot{m}\Delta C_w$
Diagram efficiency:	$\eta_d = \frac{2C_b\Delta C_w}{C_{ai}^2}$; Energy supplied per unit mass of steam $= \frac{1}{2}\dot{m}C_{ai}^2$
Power output:	$\dot{W}_{output} = \dot{m}C_b\Delta C_w$
End (Axial) thrust:	$\dot{m}\Delta C_f$; Where: $\Delta C_f = C_{fi} - C_{fe} = C_{ri} \sin \beta_i - C_{re} \sin \beta_e$
For Nozzles (EB):	$H_1 + \frac{c_1^2}{2} = H_2 + \frac{c_2^2}{2}$
Critical pressure:	$\frac{P_c}{P_1} = \left(\frac{2}{\gamma+1}\right)^{\gamma/(\gamma-1)} \text{Critical temperature:} \qquad \frac{T_c}{T_1} = \left(\frac{P_c}{P_1}\right)^{(\gamma-1)/\gamma}$
Critical specific volume:	$v_c = \frac{(R/M)T_c}{P_c}$ Critical velocity: $C_c = \sqrt{\frac{\gamma R T_c}{M}} = \sqrt{2(H_1 - H_c)} = \sqrt{2C_p(T_1 - T_c)}$
Exit specific volume:	$v_2 = \frac{(R/M)T_2}{P_2}$ Exit velocity: $C_2 = \sqrt{2(H_1 - H_2)}$
Mass flowrate per unit area: $\frac{\dot{m}}{A_2} = \frac{C_2}{v_2}$	Nozzle efficiency: $\frac{H_1 - H_2}{H_1 - H_{2s}} = \frac{C_p(T_1 - T_2)}{C_p(T_1 - T_{2s})} = \frac{T_1 - T_2}{T_1 - T_{2s}}$
Velocity coefficient:	$\frac{C_2}{C_{2s}}$ Coefficient of discharge: $\frac{\dot{m}}{\dot{m}_s}$
For dry saturated steam,	$\gamma = 1.135$ For superheated steam, $\gamma = 1.3$
Refrigeration (Engine efficiency):	$\eta_{carnot} = \frac{W_{netcarnotengine}}{Q_1} = 1 - \frac{T_2}{T_1}$
Coefficient of Performance: COP _{carr}	$not = \frac{Q_{1refrigerator}}{W_{refrigeratorinput}} = \frac{T_2}{T_1 - T_2}$
Indicated Power: $IP = \frac{n}{n-1}\dot{m}R(T_2 - T_2)$	$T_1), \ IP = \frac{n}{n-1} \dot{m}RT_1\{\left(\frac{p_2}{p_1}\right)^{\frac{(n-1)}{n}} - 1\}, \ IP = \frac{n}{n-1} \dot{V}p_1\{\left(\frac{p_2}{p_1}\right)^{\frac{(n-1)}{n}} - 1\}$
Isothermal Power: Isothermal Powe	$r = \dot{m}RT\ln\frac{p_2}{p_1}$
Volumetric Efficiency: $\bigcap_{v} = 1 - \frac{v_c}{v_s} \{ ($	$\left(\frac{p_2}{p_1}\right)^{1/n} - 1\}, \ \cap_v = \frac{V}{V_s}, \ \frac{FAD}{cycle} = (V_a - V_d) \frac{T}{T_1} \frac{p_1}{p}$
Roots Efficiency: $RE = \frac{C_p}{R} \{ \frac{r^{(\gamma-1)\gamma} - 1}{r-1} \}$	

Applied Thermodynamics 2B

	Table A.1: Conversion Factors	Energy	$1 J = 1 kg m^2 s^{-2} = 1 N m$
Quantity	Conversion		$= 1 \text{ m}^3 \text{ Pa} = 10^{-5} \text{ m}^3 \text{ bar} = 10 \text{ cm}^3 \text{ bar}$ = 9.86923 cm ³ (atm)
Length	_1 m = 100 cm = 3.28084(ft) = 39.3701(in)		= 10^{7} (dyne) cm = 10^{7} (erg) = 0.239006(cal)
Mass	$1 kg = 10^3 g$ = 2.20462(lb _m)		= 5.12197×10^{-3} (ft) ³ (psia) = 0.737562 (ft)(lb _f) = 9.47831×10^{-4} (Btu) = 2.77778×10^{-7} kWhr
Force	$1 N = 1 kg m s^{-2^{\#}}$ = 10 ⁵ (dyne) = 0.224809(lb _f)	Power	$1 \text{ kW} = 10^3 \text{ W} = 10^3 \text{ kg m}^2 \text{ s}^{-3} = 10^3 \text{ J s}^{-1}$ = 239.006(cal) s ⁻¹ = 737.562(ft)(lb _f) s ⁻¹ = 0.947831(Btu) s ⁻¹
Pressure	$1 \text{ bar} = 10^5 \text{ kg m}^{-1} \text{ s}^{-2} = 10^5 \text{ N m}^{-2}$ = 10 ⁵ Pa = 10 ² kPa = 10 ⁶ (dyne) cm ⁻² = 0.986923(atm) = 14.5038(psia)	Table	= 0.947831(Bit) s = 1.34102(hp)
Volume	= 750.061(torr) 1 m ³ = 10 ⁶ cm ³ = 10 ³ liters = 35.3147(ft) ³ = 264.172(gal)	= 83.14 cm = 82.06 cm	$10^{-1} K^{-1} = 8.314 m^3 Pa mol^{-1} K^{-1}$ $3 bar mol^{-1} K^{-1} = 8.314 cm^3 kPa mol^{-1} K^{-1}$ $3(atm) mol^{-1} K^{-1} = 62,356 cm^3(torr) mol^{-1} K^{-1}$ $100^{-1} K^{-1} = 1.986(Btu)(lb mole)^{-1}(R)^{-1}$
Density	$1 \text{ g cm}^{-3} = 10^3 \text{ kg m}^{-3}$ = 62.4278(lb _m)(ft)^{-3}	= 0.7302(ft)	$^{3}(atm)(lb\ mol)^{-1}(R)^{-1} = 10.73(ft)^{3}(psia)(lb\ mol)^{-1}(R)^{-1}$ $^{1}lb_{f})(lb\ mol)^{-1}(R)^{-1}$

	Se	turation Values		Supert	ent (T-T;)
				50 K	100 K
$\frac{T}{C} = \frac{p_0}{[bar}$	} = = = = = = = = = = = = = = = = = = =	<u>hr hr</u> [kJ/kg]	$\frac{s_{\rm f}}{[kJ/kg{\rm K}.]}$	h s [kJ/kg] [kJ/kgK]	h s [kJ/kg] [kJ/kgX]
-50 0.40 -45 0.54 -40 0.71 -35 0.93 -30 1.19	54 2.005 77 1.552 22 1.216	-44.4 1373.3 -22.3 1381.6 0 1390.0 22.3 1397.9 44.7 1405.6	-0.194 6.159 -0.096 6.057 0 5.962 0.095 5.872 0.188 5.785	1479.8 6.592 1489.3 6.486 1498.6 6.387 1507.9 6.293 1517.0 6.203	1585.9 6.948 1596.1 6.839 1606.3 6.736 1616.3 6.639 1626.3 6.547
-28 1.31 -26 1.44 -24 1.58 -22 1.74 -20 1.90	7 0.8058 8 0.7389 0 0.6783	53.6 1408.5 62.6 1411.4 71.7 1414.3 80.8 1417.3 89.8 1420.0	0.224 5.751 0.261 5.718 0.297 5.686 0.333 5.655 0.368 5.623	1520.7 6.169 1524.3 6.135 1527.9 6.103 1531.4 6.071 1534.8 6.039	1630.3 6.512 1634.2 6.477 1638.2 6.444 1642.2 6.411 1645.0 6.379
- 18 2.07 - 16 2.26 - 14 2.46 - 12 2.68 - 10 2.90	5 0.5296 5 0.4890 0 0.4521 8 0.4185	98.8 1422.7 107.9 1425.3 117.0 1427.9 126.2 1430.5 135.4 1433.0	0.404 5.593 0.440 5.563 0.475 5.533 0.510 5.504 0.544 5.475	1538.2 6.008 1541.7 5.978 1545.1 5.948 1548.5 5.919 1551.7 5.891	1650.0 6.347 1653.8 6.316 1657.7 6.286 1661.5 6.256 1665.3 6.227
- 8 3.15 - 6 3.41 - 4 3.69 - 2 3.98 0 4.29	0.3599 0.3344 0.3110	144.5 1435.3 153.6 1437.6 162.8 1439.9 172.0 1442.2 181.2 1444.4	0.579 5.447 0.613 5.419 0.647 5.392 0.681 5.365 0.715 5.340	1554.9 5.863 1558.2 5.836 1561.4 5.808 1564.6 5.782 1567.8 5.756	1669.0 6.199 1672.8 6.171 1676.4 6.143 1680.1 6.116 1683.9 6.090
2 4.62 4 4.97 6 5.34 8 5.73 10 6.14	5 0.2517 5 0.2351 5 0.2198	190.4 1446.5 199.7 1448.5 209.1 1450.6 218.5 1452.5 227.8 1454.3	0.749 5.314 0.782 5.288 0.816 5.263 0.849 5.238 0.881 5.213	1570.9 5.731 1574.0 5.706 1577.0 5.682 1580.1 5.658 1583.1 5.634	1687.5 6.065 1691.2 6.040 1694.9 6.015 1698.4 5.991 1702.2 5.967
12 6.58 14 7.04 16 7.52 18 8.03 20 8.57	5 0.1805 9 0.1693 5 0.1590	237.2 1456.1 246.6 1457.8 256.0 1459.5 265.5 1461.1 -275.1 1462.6	0.914 5.189 0.947 5.165 0.979 5.141 1.042 5.118 1.044 5.095	1586.0 5.611 1588.9 5.588 1591.7 5.565 1594.4 5.543 1597.2 5.521	1705.7 5.943 1709.1 5.920 1712.5 5.898 1715.9 5.876 1719.3 5.854
22. 9.13 24 9.72 26 10.34 28 10.99 30 11.67	4 0.1405 2 0.1322 0.1245 0.1173 0.1106	284.6 1463.9 294.1 1465.2 303.7 1466.5 313.4 1467.8 323.1 1468.9	1.076 5.072 1.108 5.049 1.140 5.027 1.172 5.005 1.204 4.984	1600.0 5.499 1602.7 5.478 1605.3 5.458 1608.0 5.437 1610.5 5.417	1722.8 5.832 1726.3 5.811 1729.6 5.790 1732.7 5.770 1735.9 5.750
32 12.37 34 13.11 36 13.89 38 14.70 40 15.54	0.1044 0.0986 0.0931 0.0880 0.0833	332.8 1469.9 342.5 1470.8 352.3 1471.8 362.1 1472.6 371.9 1473.3	1.235 4.962 1.267 4.940 1.298 4.919 1.329 4.898 1.360 4.877	1613.0 5.397 1615.4 5.378 1617.8 5.358 1620.1 5.340 1622.4 5.321	1739.3 5.731 1742.6 5.711 1745.7 5.692 1748.7 5.674 1751.9 5.655
42 16.42 44 17.34 46 18.30 48 19.29 50 20.33	0.0788 0.0746 0.0706 0.0670 0.0635	381.8 1473.8 391.8 1474.2 401.8 1474.5 411.9 1474.7 421.9 1474.7	1.391 4.856 1.422 4.835 1.453 4.814 1.484 4.793 1.515 4.773	1624.6 5.302 1626.8 5.284 1629.0 5.266 1631.1 5.248 1633.1 5.230	1755.0 5.637 1758.0 5.619 1761.0 5.602 1764.0 5.584 1766.8 5.567

						Tab	ie F.I 🗧	Saturat	ed Stea	m, SI L	Inits				000
						<i>и</i> н	= SPECIF = SPECIF		1E cm ³ NALENEI ALPY KJ DPY KJI	RGY KJ	P kg				
			SPE	CIFIC VOL	UME V	INTER	NAL ENE	RGY U	E	VTHALPY	н	E	NTROPY	S	
	ĸ	P kPa	sat. liq.	evap.	sat. vap.	sat. I iq .	evap.	sat. vap.	sat. Iiq.	evap.	sat. vap.	sat. I iq .	evap.	sat. vap.	
0 0.01 1 2 3 4	273.15 273.16 274.15 275.15 276.15 277.15	0.611 0.657 0.705 0.757 0.813	1.000 1.000 1.000 1.000 1.000 1.000	206300. 206200. 192600. 179900. 168200. 157300.	206300. 206200. 192600. 179900. 168200. 157300.	-0.04 0.00 4.17 8.39 12.60 16.80	2375.7 2375.6 2372.7 2369.9 2367.1 2364.3	2375.6 2375.6 2376.9 2378.3 2379.7 2381.1	-0.04 0.00 4.17 8.39 12.60 16.80	2501.7 2501.6 2499.2 2496.8 2494.5 2492.1	2501.6 2503.4 2505.2 2507.1 2508.9	0.0000 0.0000 0.0153 0.0306 0.0459 0.0611	9.1578 9.1575 9.1158 9.0741 9.0326 8.9915	9.1578 9.1575 9.1311 9.1047 9.0785 9.0526	
5 6 7 8 9	278.15 279.15 280.15 281.15 282.15	0.872 0.935 1.001 1.072 1.147	1.000 1.000 1.000 1.000 1.000	147200. 137800. 129100. 121000. 113400.	147200. 137800. 129100. 121000. 113400.	21.01 25.21 29.41 33.60 37.80	2361.4 2358.6 2355.8 2353.0 2350.1	2382.4 2383.8 2385.2 2386.6 2387.9	21.01 25.21 29.41 33.60 37.80	2489.7 2487.4 2485.0 2482.6 2480.3	2510.7 2512.6 2514.4 2516.2 2518.1	0.0762 0.0913 0.1063 0.1213 0.1362	8.9507 8.9102 8.8699 8.8300 8.7903	9.0269 9.0014 8.9762 8.9513 8.9265	3
0 1 2 3 4	283.15 284.15 285.15 286.15 287.15	1.227 1.312 1.401 1.497 1.597	1.000 1.000 1.000 1.001 1.001	106400. 99910. 93830. 88180. 82900.	106400. 99910. 93840. 88180. 82900.	41.99 46.18 50.38 54.56 58.75	2347.3 2344.5 2341.7 2338.9 2336.1	2389.3 2390.7 2392.1 2393.4 2394.8	41.99 46.19 50.38 54.57 58.75	2477.9 2475.5 2473.2 2470.8 2468.5	2519.9 2521.7 2523.6 2525.4 2527.2	0.1510 0.1658 0.1805 0.1952 0.2098	8.7510 8.7119 8.6731 8.6345 8.5963	8.9020 8.8776 8.8536 8.8297 8.8060	
5	288.15 289.15 290.15 291.15 292.15	1.704 1.817 1.936 2.062 2.196	1.001 1.001 1.001 1.001 1.002	77980. 73380. 69090. 65090. 61340.	77980. 73380. 69090. 65090. 61340.	62.94 67.12 71.31 75.49 79.68	2333.2 2330.4 2327.6 2324.8 2322.0	2396.2 2397.6 2398.9 2400.3 2401.7	62.94 67.13 71.31 75.50 79.68	2466.1 2463.8 2461.4 2459.0 2456.7	2529.1 2530.9 2532.7 2534.5 2536.4	0.2243 0.2388 0.2533 0.2677 0.2820	8.5582 8.5205 8.4830 8.4458 8.4088	8.7826 8.7593 8.7363 8.7135 8.6908	
0 1 2 3 4	293.15 294.15 295.15 296.15 297.15	2.337 2.485 2.642 2.808 2.982	1.002 1.002 1.002 1.002 1.003	57840. 54560. 51490. 48620. 45920.	57840. 54560. 51490. 48620. 45930.	83.86 88.04 92.22 96.40 100.6	2319.2 2316.4 2313.6 2310.7 2307.9	2403.0 2404.4 2405.8 2407.1 2408.5	83.86 88.04 92.23 96.41 100.6	2454.3 2452.0 2449.6 2447.2 2444.9	2538.2 2540.0 2541.8 2543.6 2545.5	0.2963 0.3105 0.3247 0.3389 0.3530	8.3721 8.3356 8.2994 8.2634 8.2277	8.6684 8.6462 8.6241 8.6023 8.5806	
5 6 7 8 9	298.15 299.15 300.15 301.15 302.15	3.166 3.360 3.564 3.778 4.004	1.003 1.003 1.003 1.004 1.004	43400. 41030. 38810. 36730. 34770.	43400. 41030. 38810. 36730. 34770.	104.8 108.9 113.1 117.3 121.5	2305.1 2302.3 2299.5 2296.7 2293.8	2409.9 2411.2 2412.6 2414.0 2415.3	104.8 108.9 113.1 117.3 121.5	2442.5 2440.2 2437.8 2435.4 2433.1	2547.3 2549.1 2550.9 2552.7 2554.5	0.3670 0.3810 0.3949 0.4088 0.4227	8.1922 8.1569 8.1218 8.0870 8.0524	8.5592 8.5379 8.5168 8.4959 8.4751	

							The second s								1.1
30 31 32 33 34	303.15 304.15 305.15 306.15 307.15	4.241 4.491 4.753 5.029 5.318	1.004 1.005 1.005 1.005 1.006	32930. 31200. 29570. 28040. 26600.	32930. 31200. 29570. 28040. 26600.	125.7 129.8 134.0 138.2 142.4	2291.0 2288.2 2285.4 2282.6 2279.7	2416.7 2418.0 2419.4 2420.8 2422.1	125.7 129.8 134.0 138.2 142.4	2430.7 2428.3 2425.9 2423.6 2421.2	2556.4 2558.2 2560.0 2561.8 2563.6	0.4365 0.4503 0.4640 0.4777 0.4913	8.0180 7.9839 7.9500 7.9163 7.8828	8.4546 8.4342 8.4140 8.3939 8.3740	F.2. Steam Tables
35 36 37 38 39	308.15 309.15 310.15 311.15 312.15	5.622 5.940 6.274 6.624 6.991	1.006 1.006 1.007 1.007 1.007	25240. 23970. 22760. 21630. 20560.	25240. 23970. 22760. 21630. 20560.	146.6 150.7 154.9 159.1 163.3	2276.9 2274.1 2271.3 2268.4 2265.6	2423.5 2424.8 2426.2 2427.5 2428.9	146.6 150.7 154.9 159.1 163.3	2418.8 2416.4 2414.1 2411.7 2409.3	2565.4 2567.2 2569.0 2570.8 2572.6	0.5049 0.5184 0.5319 0.5453 0.5588	7.8495 7.8164 7.7835 7.7509 7.7184	8.3543 8.3348 8.3154 8.2962 8.2772	Tables
40 41 42 43 44	313.15 314.15 315.15 316.15 317.15	7.375 7.777 8.198 8.639 9.100	1.008 1.008 1.009 1.009 1.009	19550. 18590. 17690. 16840. 16040.	19550. 18590. 17690. 16840. 16040.	167.4 171.6 175.8 180.0 184.2	2262.8 2259.9 2257.1 2254.3 2251.4	2430.2 2431.6 2432.9 2434.2 2435.6	167.5 171.6 175.8 180.0 184.2	2406.9 2404.5 2402.1 2399.7 2397.3	2574.4 2576.2 2577.9 2579.7 2581.5	0.5721 0.5854 0.5987 0.6120 0.6252	7.6861 7.6541 7.6222 7.5905 7.5590	8.2583 8.2395 8.2209 8.2025 8.1842	
45 46 47 48 49	318.15 319.15 320.15 321.15 322.15	9.582 10.09 10.61 11.16 11.74	1.010 1.010 1.011 1.011 1.012	15280. 14560. 13880. 13230. 12620.	15280. 14560. 13880. 13230. 12620.	188.3 192.5 196.7 200.9 205.1	2248.6 2245.7 2242.9 2240.0 2237.2	2436.9 2438.3 2439.6 2440.9 2442.3	188.4 192.5 196.7 200.9 205.1	2394.9 2392.5 2390.1 2387.7 2385.3	2583.3 2585.1 2586.9 2588.6 2590.4	0.6383 0.6514 0.6645 0.6776 0.6906	7.5277 7.4966 7.4657 7.4350 7.4044	8.1661 8.1481 8.1302 8.1125 8.0950	
50 51 52 53 54	323.15 324.15 325.15 326.15 327.15	12.34 12.96 13.61 14.29 15.00	1.012 1.013 1.013 1.014 1.014	12040. 11500. 10980. 10490. 10020.	12050. 11500. 10980. 10490. 10020.	209.2 213.4 217.6 221.8 226.0	2234.3 2231.5 2228.6 2225.8 2222.9	2443.6 2444.9 2446.2 2447.6 2448.9	209.3 213.4 217.6 221.8 226.0	2382.9 2380.5 2378.1 2375.7 2373.2	2592.2 2593.9 2595.7 2597.5 2599.2	0.7035 0.7164 0.7293 0.7422 0.7550	7.3741 7.3439 7.3138 7.2840 7.2543	8.0776 8.0603 8.0432 8.0262 8.0093	
55 56 57 58 59	328.15 329.15 330.15 331.15 332.15	15.74 16.51 17.31 18.15 19.02	1.015 1.015 1.016 1.016 1.017	9577.9 9157.7 8758.7 8379.8 8019.7	9578.9 9158.7 8759.8 8380.8 8020.8	230.2 234.3 238.5 242.7 246.9	2220.0 2217.2 2214.3 2211.4 2208.6	2450.2 2451.5 2452.8 2454.1 2455.4	230.2 234.4 238.5 242.7 246.9	2370.8 2368.4 2365.9 2363.5 2361.1	2601.0 2602.7 2604.5 2606.2 2608.0	0.7677 0.7804 0.7931 0.8058 0.8184	7.2248 7.1955 7.1663 7.1373 7.1085	7.9925 7.9759 7.9595 7.9431 7.9269	
60 61 62 63 64	333.15 334.15 335.15 336.15 337.15	19.92 20.86 21.84 22.86 23.91	1.017 1.018 1.018 1.019 1.019	7677.5 7352.1 7042.7 6748.2 6468.0	7678.5 7353.2 7043.7 6749.3 6469.0	251.1 255.3 259.4 263.6 267.8	2205.7 2202.8 2199.9 2197.0 2194.1	2456.8 2458.1 2459.4 2460.7 2462.0	251.1 255.3 259.5 263.6 267.8	2358.6 2356.2 2353.7 2351.3 2348.8	2609.7 2611.4 2613.2 2614.9 2616.6	0.8310 0.8435 0.8560 0.8685 0.8809	7.0798 7.0513 7.0230 6.9948 6.9667	7.9108 7.8948 7.8790 7.8633 7.8477	
65 66 67 68 69	338.15 339.15 340.15 341.15 342.15	25.01 26.15 27.33 28.56 29.84	1.020 1.020 1.021 1.022 1.022	6201.3 5947.2 5705.2 5474.6 5254.8	6202.3 5948.2 5706.2 5475.6 5255.8	272.0 276.2 280.4 284.6 288.8	2191.2 2188.3 2185.4 2182.5 2179.6	2463.2 2464.5 2465.8 2467.1 2468.4	272.0 276.2 280.4 284.6 288.8	2346.3 2343.9 2341.4 2338.9 2336.4	2618.4 2620.1 2621.8 2623.5 2625.2	0.8933 0.9057 0.9180 0.9303 0.9426	6.9388 6.9111 6.8835 6.8561 6.8288	7.8322 7.8168 7.8015 7.7864 7.7714	
70 71 72 73 74	343.15 344.15 345.15 346.15 347.15	31.16 32.53 33.96 35.43 36.96	1.023 1.023 1.024 1.025 1.025	5045.2 4845.4 4654.7 4472.7 4299.0	5046.3 4846.4 4655.7 4473.7 4300.0	292.9 297.1 301.3 305.5 309.7	2176.7 2173.8 2170.9 2168.0 2165.1	2469.7 2470.9 2472.2 2473.5 2474.8	293.0 297.2 301.4 305.5 309.7	2334.0 2331.5 2329.0 2326.5 2324.0	2626.9 2628.6 2630.3 2632.0 2633.7	0.9548 0.9670 0.9792 0.9913 1.0034	6.8017 6.7747 6.7478 6.7211 6.6945	7.7565 7.7417 7.7270 7.7124 7.6979	667
															15

130	403.15	270.13	1.070	667.1	668.1	546.0	1993.4	2539.4	546.3	2173.6	2719.9	1.6344	5.3917	7.0261
132	405.15	286.70	1.072	630.8	631.9	554.5	1986.9	2541.4	554.8	2167.8	2722.6	1.6555	5.3507	7.0061
134	407.15	304.07	1.074	596.9	598.0	563.1	1980.4	2543.4	563.4	2161.9	2725.3	1.6765	5.3099	6.9864
136	409.15	322.29	1.076	565.1	566.2	571.6	1973.8	2545.4	572.0	2155.9	2727.9	1.6974	5.2695	6.9669
138	411.15	341.38	1.078	535.3	536.4	580.2	1967.2	2547.4	580.5	2150.0	2730.5	1.7182	5.2293	6.9475
140	413.15	361.38	1.080	507.4	508.5	588.7	1960.6	2549.3	589.1	2144.0	2733.1	1.7390	5.1894	6.9284
142	415.15	382.31	1.082	481.2	482.3	597.3	1953.9	2551.2	597.7	2137.9	2735.6	1.7597	5.1499	6.9095
144	417.15	404.20	1.084	456.6	457.7	605.9	1947.2	2553.1	606.3	2131.8	2738.1	1.7803	5.1105	6.8908
146	419.15	427.09	1.086	433.5	434.6	614.4	1940.5	2554.9	614.9	2125.7	2740.6	1.8008	5.0715	6.8723
148	421.15	451.01	1.089	411.8	412.9	623.0	1933.7	2556.8	623.5	2119.5	2743.0	1.8213	5.0327	6.8539
150	423.15	476.00	1.091	391.4	392.4	631.6	1926.9	2558.6	632.1	2113.2	2745.4	1.8416	4.9941	6.8358
152	425.15	502.08	1.093	372.1	373.2	640.2	1920.1	2560.3	640.8	2106.9	2747.7	1.8619	4.9558	6.8178
154	427.15	529.29	1.095	354.0	355.1	648.9	1913.2	2562.1	649.4	2100.6	2750.0	1.8822	4.9178	6.8000
156	429.15	557.67	1.098	336.9	338.0	657.5	1906.3	2563.8	658.1	2094.2	2752.3	1.9023	4.8800	6.7823
158	431.15	587.25	1.100	320.8	321.9	666.1	1899.3	2565.5	666.8	2087.7	2754.5	1.9224	4.8424	6.7648
160	433.15	618.06	1.102	305.7	306.8	674.8	1892.3	2567.1	675.5	2081.3	2756.7	1.9425	4.8050	6.7475
162	435.15	650.16	1.105	291.3	292.4	683.5	1885.3	2568.8	684.2	2074.7	2758.9	1.9624	4.7679	6.7303
164	437,15	683.56	1.107	277.8	278.9	692.1	1878.2	2570.4	692.9	2068.1	2761.0	1.9823	4.7309	6.7133
166	439.15	718.31	1.109	265.0	266.1	700.8	1871.1	2571.9	701.6	2061.4	2763.1	2.0022	4.6942	6.6964
168	441.15	754.45	1.112	252.9	254.0	709.5	1863.9	2573.4	710.4	2054.7	2765.1	2.0219	4.6577	6.6796
170	443.15	792.02	1.114	241.4	242.6	718.2	1856.7	2574.9	719.1	2047.9	2767.1	2.0416	4.6214	6.6630
172	445.15	831.06	1.117	230.6	231.7	727.0	1849.5	2576.4	727.9	2041.1	2769.0	2.0613	4.5853	6.6465
174	447.15	871.60	1.120	220.3	221.5	735.7	1842.2	2577.8	736.7	2034.2	2770.9	2.0809	4.5493	6.6302
176	449.15	913.68	1.122	210.6	211.7	744.4	1834.8	2579.3	745.5	2027.3	2772.7	2.1004	4.5136	6.6140
178	451.15	957.36	1.125	201.4	202.5	753.2	1827.4	2580.6	754.3	2020.2	2774.5	2.1199	4.4780	6.5979
180	453.15	1002.7	1.128	192.7	193.8	762.0	1820.0	2581.9	763.1	2013.1	2776.3	2.1393	4.4426	6.5819
182	455.15	1049.6	1.130	184.4	185.5	770.8	1812.5	2583.2	772.0	2006.0	2778.0	2.1587	4.4074	6.5660
184	457.15	1098.3	1.133	176.5	177.6	779.6	1804.9	2584.5	780.8	1998.8	2779.6	2.1780	4.3723	6.5503
186	459.15	1148.8	1.136	169.0	170.2	788.4	1797.3	2585.7	789.7	1991.5	2781.2	2.1972	4.3374	6.5346
188	461.15	1201.0	1.139	161.9	163.1	797.2	1789.7	2586.9	798.6	1984.2	2782.8	2.2164	4.3026	6.5191
190	463.15	1255.1	1.142	155.2	156.3	806.1	1782.0	2588.1	807.5	1976.7	2784.3	2.2356	4.2680	6.5036
192	465.15	1311.1	1.144	148.8	149.9	814.9	1774.2	2589.2	816.5	1969.3	2785.7	2.2547	4.2336	6.4883
194	467.15	1369.0	1.147	142.6	143.8	823.8	1766.4	2590.2	825.4	1961.7	2787.1	2.2738	4.1993	6.4730
196	469.15	1428.9	1.150	136.8	138.0	832.7	1758.6	2591.3	834.4	1954.1	2788.4	2.2928	4.1651	6.4578
198	471.15	1490.9	1.153	131.3	132.4	841.6	1750.6	2592.3	843.4	1946.4	2789.7	2.3117	4.1310	6.4428
200	473.15	1554.9	1.156	126.0	127.2	850.6	1742.6	2593.2	852.4	1938.6	2790.9	2.3307	4.0971	6.4278
202	475.15	1621.0	1.160	121.0	122.1	859.5	1734.6	2594.1	861.4	1930.7	2792.1	2.3495	4.0633	6.4128
204	477.15	1689.3	1.163	116.2	117.3	868.5	1726.5	2595.0	870.5	1922.8	2793.2	2.3684	4.0296	6.3980
206	479.15	1759.8	1.166	111.6	112.8	877.5	1718.3	2595.8	879.5	1914.7	2794.3	2.3872	3.9961	6.3832
208	481.15	1832.6	1.169	107.2	108.4	886.5	1710.1	2596.6	888.6	1906.6	2795.3	2.4059	3.9626	6.3686
210	483.15	1907.7	1.173	103.1	104.2	895.5	1701.8	2597.3	897.7	1898.5	2796.2	2.4247	3.9293	6.3539
212	485.15	1985.2	1.176	99.09	100.26	904.5	1693.5	2598.0	906.9	1890.2	2797.1	2.4434	3.8960	6.3394
214	487.15	2065.1	1.179	95.28	96.46	913.6	1685.1	2598.7	916.0	1881.8	2797.9	2.4620	3.8629	6.3249
216	489.15	2147.5	1.183	91.65	92.83	922.7	1676.6	2599.3	925.2	1873.4	2798.6	2.4806	3.8298	6.3104
218	491.15	2232.4	1.186	88.17	89.36	931.8	1668.0	2599.8	934.4	1864.9	2799.3	2.4992	3.7968	6.2960

							TEMPERATU (TEMPERA	IRE: T kelvins TURE: t°C)			
P/kPa T ^{sat} /K(t ^{sat} /°C)		sat. liq.	sat. vap.	348.15 (75)	373.15 (100)	398.15 (125)	423.15 (150)	448.15 (175)	473.15 (200)	498.15 (225)	523.15 (250)
1 280.13(6.98)	VUHS	1.000 29.334 29.335 0.1060	129200. 2385.2 2514.4 8.9767	160640. 2480.8 2641.5 9.3828	172180. 2516.4 2688.6 9.5136	183720. 2552.3 2736.0 9.6365	195270. 2588.5 2783.7 9.7527	206810. 2624.9 2831.7 9.8629	218350. 2661.7 2880.1 9.9679	229890. 2698.8 2928.7 10.0681	241430. 2736.3 2977.7 10.1641
10 318.98(45.83)	VUHS	1.010 191.822 191.832 0.6493	14670. 2438.0 2584.8 8.1511	16030. 2479.7 2640.0 8.3168	17190. 2515.6 2687.5 8.4486	18350. 2551.6 2735.2 8.5722	19510. 2588.0 2783.1 8.6888	20660. 2624.5 2831.2 8.7994	21820. 2661.4 2879.6 8.9045	22980. 2698.6 2928.4 9.0049	24130. 2736.1 2977.4 9.1010
20 333.24(60.09)	VUHS	1.017 251.432 251.453 0.8321	7649.8 2456.9 2609.9 7.9094	8000.0 2478.4 2638.4 7.9933	8584.7 2514.6 2686.3 8.1261	9167.1 2550.9 2734.2 8.2504	9748.0 2587.4 2782.3 8.3676	10320. 2624.1 2830.6 8.4785	10900. 2661.0 2879.2 8.5839	11480. 2698.3 2928.0 8.6844	12060. 2735.8 2977.1 8.7806
30 342.27(69.12)	VUHS	1.022 289.271 289.302 0.9441	5229.3 2468.6 2625.4 7.7695	5322.0 2477.1 2636.8 7.8024	5714.4 2513.6 2685.1 7.9363	6104.6 2550.2 2733.3 8.0614	6493.2 2586.8 2781.6 8.1791	6880.8 2623.6 2830.0 8.2903	7267.5 2660.7 2878.7 8.3960	7653.8 2698.0 2927.6 8.4967	8039.7 2735.6 2976.8 8.5930
40 349.04(75.89)	VUHS	1.027 317.609 317.650 1.0261	3993.4 2477.1 2636.9 7.6709		4279.2 2512.6 2683.8 7.8009	4573.3 2549.4 2732.3 7.9268	4865.8 2586.2 2780.9 8.0450	5157.2 2623.2 2829.5 8.1566	5447.8 2660.3 2878.2 8.2624	5738.0 2697.7 2927.2 8.3633	6027.7 2735.4 2976.5 8.4598
50 354.50(81.35)	VUHS	1.030 340.513 340.564 1.0912	3240.2 2484.0 2646.0 7.5947		3418.1 2511.7 2682.6 7.6953	3654.5 2548.6 2731.4 7.8219	3889.3 2585.6 2780.1 7.9406	4123.0 2622.7 2828.9 8.0526	4356.0 2659.9 2877.7 8.1587	4588.5 2697.4 2926.8 8.2598	4820.5 2735.1 2976.1 8.3564
75 364.94(91.79)	VUHS	1.037 384.374 384.451 1.2131	2216.9 2496.7 2663.0 7.4570		2269.8 2509.2 2679.4 7.5014	2429.4 2546.7 2728.9 7.6300	2587.3 2584.2 2778.2 7.7500	2744.2 2621.6 2827.4 7.8629	2900.2 2659.0 2876.6 7.9697	3055.8 2696.7 2925.8 8.0712	3210.9 2734.5 2975.3 8.1681
100 372.78(99.63)	VUHS	1.043 417.406 417.511 1.3027	1693.7 2506.1 2675.4 7.3598		1695.5 2506.6 2676.2 7.3618	1816.7 2544.8 2726.5 7.4923	1936.3 2582.7 2776.3 7.6137	2054.7 2620.4 2825.9 7.7275	2172.3 2658.1 2875.4 7.8349	2289.4 2695.9 2924.9 7.9369	2406.1 2733.9 2974.5 8.0342

101.325 373.15(100.00)	VUHS	1.044 418.959 419.064 1.3069	1673.0 2506.5 2676.0 7.3554	· · · · · · · · · · · · · · · · · · ·	1673.0 2506.5 2676.0 7.3554	1792.7 2544.7 2726.4 7.4860	1910.7 2582.6 2776.2 7.6075	2027.7 2620.4 2825.8 7.7213	2143.8 2658.1 2875.3 7.8288	2259.3 2695.9 2924.8 7.9308	2374.5 2733.9 2974.5 8.0280	
125 379.14(105.99)	VUHS	1.049 444.224 444.356 1.3740	1374.6 2513.4 2685.2 7.2847		·····	1449.1 2542.9 2724.0 7.3844	1545.6 2581.2 2774.4 7.5072	1641.0 2619.3 2824.4 7.6219	1735.6 2657.2 2874.2 7.7300	1829.6 2695.2 2923.9 7.8324	1923.2 2733.3 2973.7 7.9300	
150 384.52(111.37)	VUHS	1.053 466.968 467.126 1.4336	1159.0 2519.5 2693.4 7.2234			1204.0 2540.9 2721.5 7.2953	1285.2 2579.7 2772.5 7.4194	1365.2 2618.1 2822.9 7.5352	1444.4 2656.3 2872.9 7.6439	1523.0 2694.4 2922.9 7.7468	1601.3 2732.7 2972.9 7.8447	
175 389.21(116.06)	VUHS	1.057 486.815 487.000 1.4849	1003.34 2524.7 2700.3 7.1716			1028.8 2538.9 2719.0 7.2191	1099.1 2578.2 2770.5 7.3447	1168.2 2616.9 2821.3 7.4614	1236.4 2655.3 2871.7 7.5708	1304.1 2693.7 2921.9 7.6741	1371.3 2732.1 2972.0 7.7724	
200 393.38(120.23)	VUHS	1.061 504.489 504.701 1.5301	885.44 2529.2 2706.3 7.1268			897.47 2536.9 2716.4 7.1523	959.54 2576.6 2768.5 7.2794	1020.4 2615.7 2819.8 7.3971	1080.4 2654.4 2870.5 7.5072	1139.8 2692.9 2920.9 7.6110	1198.9 2731.4 2971.2 7.7096	
225 397.14(123.99)	VUHS	1.064 520.465 520.705 1.5705	792.97 2533.2 2711.6 7.0873		·····	795.25 2534.8 2713.8 7.0928	850.97 2575.1 2766.5 7.2213	905.44 2614.5 2818.2 7.3400	959.06 2653.5 2869.3 7.4508	1012.1 2692.2 2919.9 7.5551	1064.7 2730.8 2970.4 7.6540	
250 400.58(127.43)	VUHS	1.068 535.077 535.343 1.6071	718.44 2536.8 2716.4 7.0520				764.09 2573.5 2764.5 7.1689	813.47 2613.3 2816.7 7.2886	861.98 2652.5 2868.0 7.4001	909.91 2691.4 2918.9 7.5050	957.41 2730.2 2969.6 7.6042	
275 403.75(130.60)	VUHS	1.071 548.564 548.858 1.6407	657.04 2540.0 2720.7 7.0201				693.00 2571.9 2762.5 7.1211	738.21 2612.1 2815.1 7.2419	782.55 2651.6 2866.8 7.3541	826.29 2690.7 2917.9 7.4594	869.61 2729.6 2968.7 7.5590	
300 406.69(133.54)	VUHS	1.073 561.107 561.429 1.6716	605.56 2543.0 2724.7 6.9909			·····	633.74 2570.3 2760.4 7.0771	675.49 2610.8 2813.5 7,1990	716.35 2650.6 2865.5 7.3119	756.60 2689.9 2916.9 7.4177	796.44 2729.0 2967.9 7.5176	

								IRE: T kelvins .TURE: f °C)			
P/kPa ^{r sat} /K(t ^{sat} /°C)		sat. lig.	sat. vap.	573.15 (300)	623.15 (350)	673.15 (400)	723.15 (450)	773.15 (500)	823.15 (550)	873.15 (600)	923.15 (650)
1 280.13(6.98)	V U H S	1.000 29.334 29.335 0.1060	129200. 2385.2 2514.4 8.9767	264500. 2812.3 3076.8 10.3450	287580. 2889.9 3177.5 10.5133	310660. 2969.1 3279.7 10.6711	333730. 3049.9 3383.6 10.8200	356810. 3132.4 3489.2 10.9612	379880. 3216.7 3596.5 11.0957	402960. 3302.6 3705.6 11.2243	426040. 3390.3 3816.4 11.3476
10 318.98(45.83)	V U H S	1.010 191.822 191.832 0.6493	14670. 2438.0 2584.8 8.1511	26440. 2812.2 3076.6 9.2820	28750. 2889.8 3177.3 9.4504	31060. 2969.0 3279.6 9.6083	33370. 3049.8 3383.5 9.7572	35670. 3132.3 3489.1 9.8984	37980. 3216.6 3596.5 10.0329	40290. 3302.6 3705.5 10.1616	42600. 3390.3 3816.3 10.2849
20 333.24(60.09)	V U H S	1.017 251.432 251.453 0.8321	7649.8 2456.9 2609.9 7.9094	13210. 2812.0 3076.4 8.9618	14370. 2889.6 3177.1 9.1303	15520. 2968.9 3279.4 9.2882	16680. 3049.7 3383.4 9.4372	17830. 3132.3 3489.0 9.5784	18990. 3216.5 3596.4 9.7130	20140. 3302.5 3705.4 9.8416	21300. 3390.2 3816.2 9.9650
30 342.27(69.12)	V U H S	1.022 289.271 289.302 0.9441	5229.3 2468.6 2625.4 7.7695	8810.8 2811.8 3076.1 8.7744	9581.2 2889.5 3176.9 8.9430	10350. 2968.7 3279.3 9.1010	11120. 3049.6 3383.3 9.2499	11890. 3132.2 3488.9 9.3912	12660. 3216.5 3596.3 9.5257	13430. 3302.5 3705.4 9.6544	14190. 3390.2 3816.2 9.7778
40 349.04(75.89)	VUHS	1.027 317.609 317.650 1.0261	3993.4 2477.1 2636.9 7.6709	6606.5 2811.6 3075.9 8.6413	7184.6 2889.4 3176.8 8.8100	7762.5 2968.6 3279.1 8.9680	8340.1 3049.5 3383.1 9.1170	8917.6 3132.1 3488.8 9.2583	9494.9 3216.4 3596.2 9.3929	10070. 3302.4 3705.3 9.5216	10640. 3390.1 3816.1 9.6450
50 354.50(81.35)	v UHS	1.030 340.513 340.564 1.0912	3240.2 2484.0 2646.0 7.5947	5283.9 2811.5 3075.7 8.5380	5746.7 2889.2 3176.6 8.7068	6209.1 2968.5 3279.0 8.8649	6671.4 3049.4 3383.0 9.0139	7133.5 3132.0 3488.7 9.1552	7595.5 3216.3 3596.1 9.2898	8057.4 3302.3 3705.2 9.4185	8519.2 3390.1 3816.0 9.5419
75 364.94(91.79)	v UHS	1.037 384.374 384.451 1.2131	2216.9 2496.7 2663.0 7.4570	3520.5 2811.0 3075.1 8.3502	3829.4 2888.9 3176.1 8.5191	4138.0 2968.2 3278.6 8.6773	4446.4 3049.2 3382.7 8.8265	4754.7 3131.8 3488.4 8.9678	5062.8 3216.1 3595.8 9.1025	5370.9 3302.2 3705.0 9.2312	5678.9 3389.9 3815.9 9.3546
100 372.78(99.63)	V U H S	1.043 417.406 417.511 1.3027	1693.7 2506.1 2675.4 7.3598	2638.7 2810.6 3074.5 8.2166	2870.8 2888.6 3175.6 8.3858	3102.5 2968.0 3278.2 8.5442	3334.0 3049.0 3382.4 8.6934	3565.3 3131.6 3488.1 8.8348	3796.5 3216.0 3595.6 8.9695	4027.7 3302.0 3704.8 9.0982	4258.8 3389.8 3815.7 9.2217

			Table	∍r∠ Sup	erneated	Steam, SI	Units (Co	ntinued)			
							(TEMPERATU (TEMPERA	JRE: 7 kelvins TURE: t ° C)	;)		
P/kPa F ^{sat} /K (t ^{sat} /°C)		sat. liq.	sat. vap.	423.15 (1 50)	448.15 (175)	473.15 (200)	493.15 (220)	513.15 (240)	533.15 (260)	553.15 (280)	573.15 (300)
325 409.44(136.29)	VUHS	1.076 572.847 573.197 1.7004	561.75 2545.7 2728.3 6.9640	583.58 2568.7 2758.4 7.0363	622.41 2609.6 2811.9 7.1592	660.33 2649.6 2864.2 7.2729	690.22 2681.2 2905.6 7.3585	719.81 2712.7 2946.6 7.4400	749.18 2744.0 2987.5 7.5181	778.39 2775.3 3028.2 7.5933	807.47 2806.6 3069.0 7.6657
350 412.02(138.87)	VUHS	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	540.68 2567.1 2756.3 6.9982	576.90 2608.3 2810.3 7.1222	612.31 2648.6 2863.0 7.2366	640.18 2680.4 2904.5 7.3226	667.75 2712.0 2945.7 7.4045	695.09 2743.4 2986.7 7.4828	722.27 2774.8 3027.6 7.5581	749.33 2806.2 3068.4 7.6307
375 414.46(141.31)	VUHS	1.081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6.9160	503.29 2565.4 2754.1 6.9624	537.46 2607.1 2808.6 7.0875	570.69 2647.7 2861.7 7.2027	596.81 2679.6 2903.4 7.2891	622.62 2711.3 2944.8 7.3713	648.22 2742.8 2985.9 7.4499	673.64 2774.3 3026.9 7.5254	698.94 2805.7 3067.8 7.5981
400 416.17(143.62)	VUHS	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	470.66 2563.7 2752.0 6.9285	502.93 2605.8 2807.0 7.0548	534.26 2646.7 2860.4 7.1708	558.85 2678.8 2902.3 7.2576	583.14 2710.6 2943.9 7.3402	607.20 2742.2 2985.1 7.4190	631.09 2773.7 3026.2 7.4947	654.85 2805.3 3067.2 7.5675
425 418.97(145.82)	VUHS	1.086 613.667 614.128 1.7990	436.61 2554.8 2740.3 6.8739	441.85 2562.0 2749.8 6.8965	472.47 2604.5 2805.3 7.0239	502.12 2645.7 2859.1 7.1407	525.36 2678.0 2901.2 7.2280	548.30 2709.9 2942.9 7.3108	571.01 2741.6 2984.3 7.3899	593.54 2773.2 3025.5 7.4657	615.95 2804.8 3066.6 7.5388
450 421.07(147.92)	VUHS	1.088 622.672 623.162 1.8204	413.75 2556.7 2742.9 6.8547	416.24 2560.3 2747.7 6.8660	445.38 2603.2 2803.7 6.9946	473.55 2644.7 2857.8 7.1121	495.59 2677.1 2900.2 7.1999	517.33 2709.2 2942.0 7.2831	538.83 2741.0 2983.5 7.3624	560.17 2772.7 3024.8 7.4384	581.37 2804.4 3066.0 7.5116
475 423.07(149.92)	VUHS	1.091 631.294 631.812 1.8408	393.22 2558.5 2745.3 6.8365	393.31 2558.6 2745.5 6.8369	421.14 2601.9 2802.0 6:9667	447.97 2643.7 2856.5 7.0850	468.95 2676.3 2899.1 7.1732	489.62 2708.5 2941.1 7.2567	510.05 2740.4 2982.7 7.3363	530.30 2772.2 3024.1 7.4125	550.43 2803.9 3065.4 7.4858
500 424.99(151.84)	VUHS	1.093 639.569 640.116 1.8604	374.68 2560.2 2747.5 6.8192	·····	399.31 2600.6 2800.3 6.9400	424.96 2642.7 2855.1 7.0592	444.97 2675.5 2898.0 7.1478	464.67 2707.8 2940.1 7.2317	484.14 2739.8 2981.9 7.3115	503.43 2771.7 3023.4 7.3879	522.58 2803.5 3064.8 7.4614

								RE: T kelvins TURE: t °C)				
P/kPa T ^{sat} /K (t ^{sat} /°C)		sat. liq.	sat. vap.	598.15 (325)	623.15 (350)	673.15 (400)	723.15 (450)	773.15 (500)	823.15 (550)	873.15 (600)	923.15 (650)	
325 409.44(136.29)	VUHS	1.076 572.847 573.197 1.7004	561.75 2545.7 2728.3 6.9640	843.68 2845.9 3120.1 7.7530	879.78 2885.5 3171.4 7.8369	951.73 2965.5 3274.8 7.9965	1023.5 3046.9 3379.5 8.1465	1095.0 3129.8 3485.7 8.2885	1166.5 3214.4 3593.5 8.4236	1237.9 3300.6 3702.9 8.5527	1309.2 3388.6 3814.1 8.6764	
350 412.02(138.87)	VUHS	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	783.01 2845.6 3119.6 7.7181	816.57 2885.1 3170.9 7.8022	883.45 2965.2 3274.4 7.9619	950.11 3046.6 3379.2 8.1120	1016.6 3129.6 3485.4 8.2540	1083.0 3214.2 3593.3 8.3892	1149.3 3300.5 3702.7 8.5183	1215.6 3388.4 3813.9 8.6421	
375 414.46(141.31)	VUHS	1.081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6.9160	730.42 2845.2 3119.1 7.6856	761.79 2884.8 3170.5 7.7698	824.28 2964.9 3274.0 7.9296	886.54 3046.4 3378.8 8.0798	948.66 3129.4 3485.1 8.2219	1010.7 3214.0 3593.0 8.3571	1072.6 3300.3 3702.5 8.4863	1134.5 3388.3 3813.7 8.6101	
400 416.77(143.62)	VUHS	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	684.41 2844.8 3118.5 7.6552	713.85 2884.5 3170.0 7.7395	772.50 2964.6 3273.6 7.8994	830.92 3046.2 3378.5 8.0497	889.19 3129.2 3484.9 8.1919	947.35 3213.8 3592.8 8.3271	1005.4 3300.2 3702.3 8.4563	1063.4 3388.2 3813.5 8.5802	
425 418.97(145.82)	VUHS	1.086 613.667 614.128 1.7990	436.61 2554.8 2740.3 6.8739	643.81 2844.4 3118.0 7.6265	671.56 2884.1 3169.5 7.7109	726.81 2964.4 3273.3 7.8710	781.84 3045.9 3378.2 8.0214	836.72 3129.0 3484.6 8.1636	891.49 3213.7 3592.5 8.2989	946.17 3300.0 3702.1 8.4282	1000.8 3388.0 3813.4 8.5520	
450 421.07(147.92)	VUHS	1.088 622.672 623.162 1.8204	413.75 2556.7 2742.9 6.8547	607.73 2844.0 3117.5 7.5995	633.97 2883.8 3169.1 7.6840	686.20 2964.1 3272.9 7.8442	738.21 3045.7 3377.9 7.9947	790.07 3128.8 3484.3 8.1370	841.83 3213.5 3592.3 8.2723	893.50 3299.8 3701.9 8.4016	945.10 3387.9 3813.2 8.5255	
475 423.07(149.92)	VUHS	1.091 631.294 631.812 1.8408	393.22 2558.5 2745.3 6.8365	575.44 2843.6 3116.9 7.5739	600.33 2883.4 3168.6 7.6585	649.87 2963.8 3272.5 7.8189	699.18 3045.4 3377.6 7.9694	748.34 3128.6 3484.0 8.1118	797.40 3213.3 3592.1 8.2472	846.37 3299.7 3701.7 8.3765	895.27 3387.7 3813.0 8.5004	
500 424.99(151.84)	VUHS	1.093 639.569 640.116 1.8604	374.68 2560.2 2747.5 6.8192	546.38 2843.2 3116.4 7.5496	570.05 2883.1 3168.1 7.6343	617.16 2963.5 3272.1 7.7948	664.05 3045.2 3377.2 7.9454	710.78 3128.4 3483.8 8.0879	757.41 3213.1 3591.8 8.2233	803.95 3299.5 3701.5 8.3526	850.42 3387.6 3812.8 8.4766	

ATDCHB2

Γ

P/kPa 7 ^{sat} /K (t ^{sat} /°C)		TEMPERATURE: T kelvins (TEMPERATURE: t°C)										
		sat. liq .	sat. vap.	698.15 (425)	723.15 (450)	748.15 (475)	773.15 (500)	798.15 (525)	823.15 (550)	873.15 (600)	923.15 (650)	
2400 494.93(221.78)	VUHS	1.193 949.066 951.929 2.5343	83.199 2600.7 2800.4 6.2690	130.44 2984.5 3297.5 7.1189	135.61 3027.1 3352.6 7.1964	140.73 3069.9 3407.7 7.2713	145.82 3112.9 3462.9 7.3439	150.88 3156.1 3518.2 7.4144	155.91 3199.6 3573.8 7.4830	165.92 3287.7 3685.9 7.6152	175.86 3377.2 3799.3 7.7414	
2500 497.09(223.94)	VUHS	1.197 958.969 961.962 2.5543	79.905 2601.2 2800.9 6.2536	125.07 2983.4 3296.1 7.0986	130.04 3026.2 3351.3 7.1763	134.97 3069.0 3406.5 7.2513	139.87 3112.1 3461.7 7.3240	144.74 3155.4 3517.2 7.3946	149.58 3198.9 3572.9 7.4633	159.21 3287.1 3685.1 7.5956	168.76 3376.7 3798.6 7.7220	
2600 499.19(226.04)	VUHS	1.201 968.597 971.720 2.5736	76.856 2601.5 2801.4 6.2387	120.11 2982.3 3294.6 7.0789	124.91 3025.2 3349.9 7.1568	129.66 3068.1 3405.3 7.2320	134.38 3111.2 3460.6 7.3048	139.07 3154.6 3516.2 7.3755	143.74 3198.2 3571.9 7.4443	153.01 3286.5 3684.3 7.5768	162.21 3376.1 3797.9 7.7033	
2700 501.22(228.07)	VUHS	1.205 977.968 981.222 2.5924	74.025 2601.8 2801.7 6.2244	115.52 2981.2 3293.1 7.0600	120.15 3024.2 3348.6 7.1381	124.74 3067.2 3404.0 7.2134	129.30 3110.4 3459.5 7.2863	133.82 3153.8 3515.2 7.3571	138.33 3197.5 3571.0 7.4260	147.27 3285.8 3683.5 7.5587	156.14 3375.6 3797.1 7.6853	
2800 503.20(230.05)	マロオの	1.209 987.100 990.485 2.6106	71.389 2602.1 2802.0 6.2104	111.25 2980.2 3291.7 7.0416	115.74 3023.2 3347.3 7.1199	120.17 3066.3 3402.8 7.1954	124.58 3109.6 3458.4 7.2685	128.95 3153.1 3514.1 7.3394	133.30 3196.8 3570.0 7.4084	141.94 3285.2 3682.6 7.5412	150.50 3375.0 3796.4 7.6679	
2900 505.12(231.97)	VUHS	1.213 996.008 999.524 2.6283	68.928 2602.3 2802.2 6.1969	107.28 2979.1 3290.2 7.0239	111.62 3022.3 3346.0 7.1024	115.92 3065.5 3401.6 7.1780	120.18 3108.8 3457.3 7.2512	124.42 3152.3 3513.1 7.3222	128.62 3196.1 3569.1 7.3913	136.97 3284.6 3681.8 7.5243	145.26 3374.5 3795.7 7.6511	
3000 506.99(233.84)	VUHS	1.216 1004.7 1008.4 2.6455	66.626 2602.4 2802.3 6.1837	103.58 2978.0 3288.7 7.0067	107.79 3021.3 3344.6 7.0854	111.95 3064.6 3400.4 7.1612	116.08 3107.9 3456.2 7.2345	120.18 3151.5 3512.1 7.3056	124.26 3195.4 3568.1 7.3748	132.34 3284.0 3681.0 7.5079	140.36 3373.9 3795.0 7.6349	
3100 508.82(235.67)	VUHS	1.220 1013.2 1017.0 2.6623	64.467 2602.5 2802.3 6.1709	100.11 2976.9 3287.3 6.9900	104.20 3020.3 3343.3 7.0689	108.24 3063.7 3399.2 7.1448	112.24 3107.1 3455.1 7.2183	116.22 3150.8 3511.0 7.2895	120.17 3194.7 3567.2 7.3588	128.01 3283.3 3680.2 7,4920	135.78 3373.4 3794.3 7.6191	

3200 510.60(237.45)	V U H S	1.224 1021.5 1025.4 2.6786	62.439 2602.5 2802.3 6.1585	96.859 2975.9 3285.8 6.9738	100.83 3019.3 3342.0 7.0528	104.76 3062.8 3398.0 7.1290	108.65 3106.3 3454.0 7.2026	112.51 3150.0 3510.0 7.2739	116.34 3193.9 3566.2 7.3433	123.95 3282.7 3679.3 7.4767	131.48 3372.8 3793.6 7.6039	Dicum Indica
3300 i12.33(239.18)	V U H S	1.227 1029.7 1033.7 2.6945	60.529 2602.5 2802.3 6.1463	93.805 2974.8 3284.3 6.9580	97.668 3018.3 3340.6 7.0373	101.49 3061.9 3396.8 7.1136	105.27 3105.5 3452.8 7.1873	109.02 3149.2 3509.0 7.2588	112.74 3193.2 3565.3 7.3282	120.13 3282.1 3678.5 7.4618	127.45 3372.3 3792.9 7.5891	
3400 i14.03(240.88)	V U H S	1.231 1037.6 1041.8 2.7101	58.728 2602.5 2802.1 6.1344	90.930 2973.7 3282.8 6.9426	94.692 3017.4 3339.3 7.0221	98.408 3061.0 3395.5 7.0986	102.09 3104.6 3451.7 7.1724	105.74 3148.4 3507.9 7.2440	109.36 3192.5 3564.3 7.3136	116.54 3281.5 3677.7 7.4473	123.65 3371.7 3792.1 7.5747	
3500 515.69(242.54)	V U H S	1.235 1045.4 1049.8 2.7253	57.025 2602.4 2802.0 6.1228	88.220 2972.6 3281.3 6.9277	91.886 3016.4 3338.0 7.0074	95.505 3060.1 3394.3 7.0840	99.088 3103.8 3450.6 7.1580	102.64 3147.7 3506.9 7.2297	106.17 3191.8 3563.4 7.2993	113.15 3280.8 3676.9 7.4332	120.07 3371.2 3791.4 7.5607	
3600 17.31(244.16)	V U H S	1.238 1053.1 1057.6 2.7401	55.415 2602.2 2801.7 6.1115	85.660 2971.5 3279.8 6.9131	89.236 3015.4 3336.6 6.9930	92.764 3059.2 3393.1 7.0698	96.255 3103.0 3449.5 7.1439	99.716 3146.9 3505.9 7.2157	103.15 3191.1 3562.4 7.2854	109.96 3280.2 3676.1 7.4195	116.69 3370.6 3790.7 7.5471	
3700 518.90(245.75)	V U H S	1.242 1060.6 1065.2 2.7547	53.888 2602.1 2801.4 6.1004	83.238 2970.4 3278.4 6.8989	86.728 3014.4 3335.3 6.9790	90.171 3058.2 3391.9 7.0559	93.576 3102.1 3448.4 7.1302	96.950 3146.1 3504.9 7.2021	100.30 3190.4 3561.5 7.2719	106.93 3279.6 3675.2 7.4061	113.49 3370.1 3790.0 7.5339	
3800 520.46(247.31)	V U H S	1.245 1068.0 1072.7 2.7689	52.438 2601.9 2801.1 6.0896	80.944 2969.3 3276.8 6.8849	84.353 3013.4 3333.9 6.9653	87.714 3057.3 3390.7 7.0424	91.038 3101.3 3447.2 7.1168	94.330 3145.4 3503.8 7.1888	97.596 3189.6 3560.5 7.2587	104.06 3279.0 3674.4 7.3931	110.46 3369.5 3789.3 7.5210	
3900 521.99(248.84)	VUHS	1.249 1075.3 1080.1 2.7828	51.061 2601.6 2800.8 6.0789	78.767 2968.2 3275.3 6.8713	82.099 3012.4 3332.6 6.9519	85.383 3056.4 3389.4 7.0292	88.629 3100.5 3446.1 7.1037	91.844 3144.6 3502.8 7.1759	95.033 3188.9 3559.5 7.2459	101.35 3278.3 3673.6 7.3804	107.59 3369.0 3788.6 7.5084	
4000 523.48(250.33)	V U H S	1.252 1082.4 1087.4 2.7965	49.749 2601.3 2800.3 6.0685	76.698 2967.0 3273.8 6.8581	79.958 3011.4 3331.2 6.9388	83.169 3055.5 3388.2 7.0163	86.341 3099.6 3445.0 7.0909	89.483 3143.8 3501.7 7.1632	92.598 3188.2 3558.6 7.2333	98.763 3277.7 3672.8 7.3680	104.86 3368.4 3787.9 7.4961	

		TEMPERATURE: T kelvins											
<i>P/</i> kPa T ^{sat} /K (t ^{sat} /°C)		sat. liq.	sat. vap.	533.15 (260)	548.15 (275)	573.15 (300)	598.15 (325)	623.15 (350)	648.15 (375)	673.15 (400)	698.15 (425)		
4100 524.95(251.80)	VUHS	1.256 1089.4 1094.6 2.8099	48.500 2601. 0 2799.9 6.0583	50.150 2624.6 2830.3 6.1157	52.955 2664.5 2881.6 6.2107	57.191 2724.0 2958.5 6.3480	61.057 2777.7 3028.0 6.4667	64.680 2827.6 3092.8 6.5727	68.137 2875.0 3154.4 6.6697	71.476 2920.9 3214.0 6.7600	74.730 2965.9 3272.3 6.8450		
4200 526.39(253.24)	VUHS	1.259 1096.3 1101.6 2.8231	47.307 2600.7 2799.4 6.0482	48.654 2620.4 2824.8 6.0962	51.438 2661.0 2877.1 6.1929	55.625 2721.4 2955.0 6.3320	59.435 2775.6 3025.2 6.4519	62.998 2825.8 3090.4 6.5587	66.392 2873.6 3152.4 6.6563	69.667 2919.7 3212.3 6.7469	72.856 2964.8 3270.8 6.8323		
4300 527.81(254.66)	VUHS	1.262 1103.1 1108.5 2.8360	46.168 2600.3 2798.9 6.0383	47.223 2616.2 2819.2 6.0768	49.988 2657.5 2872.4 6.1752	54.130 2718.7 2951.4 6.3162	57.887 2773.4 3022.3 6.4373	61.393 2824.1 3088.1 6.5450	64.728 2872.1 3150.4 6.6431	67.942 2918.4 3210.5 6.7341	71.069 2963.7 3269.3 6.8198		
4400 529.20(256.05)	VUHS	1.266 1109.8 1115.4 2.8487	45.079 2599.9 2798.3 6.0286	45.853 2611.8 2813.6 6.0575	48.601 2653.9 2867.8 6.1577	52.702 2716.0 2947.8 6.3006	56.409 2771.3 3019.5 6.4230	59.861 2822.3 3085.7 6.5315	63.139 2870.6 3148.4 6.6301	66.295 2917.1 3208.8 6.7216	69.363 2962.5 3267.7 6.8076		
4500 530.56(257.41)	VUHS	1.269 1116.4 1122.1 2.8612	44.037 2599.5 2797.7 6.0191	44.540 2607.4 2807.9 6.0382	47.273 2650.3 2863.0 6.1403	51.336 2713.2 2944.2 6.2852	54.996 2769.1 3016.6 6.4088	58.396 2820.5 3083.3 6.5182	61.620 2869.1 3146.4 6.6174	64.721 2915.8 3207.1 6.7093	67.732 2961.4 3266.2 6.7955		
4600 531.90(258.75)	V U H S	1.272 1122.9 1128.8 2.8735	43.038 2599.1 2797.0 6.0097	43.278 2602.9 2802.0 6.0190	46.000 2646.6 2858.2 6.1230	50.027 2710.4 2940.5 6.2700	53.643 2766.9 3013.7 6.3949	56.994 2818.7 3080.9 6.5050	60.167 2867.6 3144.4 6.6049	63.215 2914.5 3205.3 6.6972	66.172 2960.3 3264.7 6.7838		
4700 533.22(260.07)	VUHS	1.276 1129.3 1135.3 2.8855	42.081 2598.6 2796.4 6.0004		44.778 2642.9 2853.3 6.1058	48.772 2707.6 2936.8 6.2549	52.346 2764.7 3010.7 6.3811	55.651 2816.9 3078.5 6.4921	58.775 2866.1 3142.3 6.5926	61.773 2913.2 3203.6 6.6853	64.679 2959.1 3263.1 6.7722		
4800 534.52(261.37)	VUHS	1.279 1135.6 1141.8 2.8974	41.161 2598.1 2795.7 5.9913		43.604 2639.1 2848.4 6.0887	47.569 2704.8 2933.1 6.2399	51.103 2762.5 3007.8 6.3675	54.364 2815.1 3076.1 6.4794	57.441 2864.6 3140.3 6.5805	60.390 2911.9 3201.8 6.6736	63.247 2958.0 3261.6 6.7608		

P/kPa 7 ^{sat} /K (t ^{sat} /°C)		TEMPERATURE: T kg/vins (TEMPERATURE: t C)										
		sat. iiq.	sat. vap.	723.15 (450)	748.15 (475)	773.15 (500)	798.15 (525)	823.15 (550)	848.15 (575)	873.15 (600)	923.15 (650)	
4100 524.95(251.80)	VUHS	1.256 1089.4 1094.6 2.8099	48.500 2601.0 2799.9 6.0583	77.921 3010.4 3329.9 6.9260	81.062 3054.6 3387.0 7.0037	84.165 3098.8 3443.9 7.0785	87.236 3143.0 3500.7 7.1508	90.281 3187.5 3557.6 7.2210	93.303 3232.1 3614.7 7.2893	96.306 3277.1 3671.9 7.3558	102.26 3367.9 3787.1 7.4842	
4200 526.39(253.24)	VUHS	1.259 1096.3 1101.6 2.8231	47.307 2600.7 2799.4 6.0482	75.981 3009.4 3328.5 6.9135	79.056 3053.7 3385.7 6.9913	82.092 3097.9 3442.7 7.0662	85.097 3142.3 3499.7 7.1387	88.075 3186.8 3556.7 7.2090	91.030 3231.5 3613.8 7.2774	93.966 3276.5 3671.1 7.3440	99.787 3367.3 3786.4 7.4724	
4300 527.81(254.66)	VUHS	1.262 1103.1 1108.5 2.8360	46.168 2600.3 2798.9 6.0383	74.131 3008.4 3327.1 6.9012	77.143 3052.8 3384.5 6.9792	80.116 3097.1 3441.6 7.0543	83.057 3141.5 3498.6 7.1269	85.971 3186.0 3555.7 7.1973	88.863 3230.8 3612.9 7.2658	91.735 3275.8 3670.3 7.3324	97.428 3366.8 3785.7 7.4610	
4400 529.20(256.05)	VUHS	1.266 1109.8 1115.4 2.8487	45.079 2599.9 2798.3 6.0286	72.365 3007.4 3325.8 6.8892	75.317 3051.9 3383.3 6.9674	78.229 3096.3 3440.5 7.0426	81.110 3140.7 3497.6 7.1153	83.963 3185.3 3554.7 7.1858	86.794 3230.1 3612.0 7.2544	89.605 3275.2 3669.5 7.3211	95.177 3366.2 3785.0 7.4498	
4500 530.56(257.41)	VUHS	1.269 1116.4 1122.1 2.8612	44.037 2599.5 2797.7 6.0191	70.677 3006.3 3324.4 6.8774	73.572 3050.9 3382.0 6.9558	76.427 3095.4 3439.3 7.0311	79.249 3139.9 3496.6 7.1040	82.044 3184.6 3553.8 7.1746	84.817 3229.5 3611.1 7.2432	87.570 3274.6 3668.6 7.3100	93.025 3365.7 3784.3 7.4388	
4600 531.90(258.75)	VUHS	1.272 1122.9 1128.8 2.8735	43.038 2599.1 2797.0 6.0097	69.063 3005.3 3323.0 6.8659	71.903 3050.0 3380.8 6.9444	74.702 3094.6 3438.2 7.0199	77.469 3139.2 3495.5 7.0928	80.209 3183.9 3552.8 7.1636	82.926 3228.8 3610.2 7.2323	85.623 3273.9 3667.8 7.2991	90.967 3365.1 3783.6 7.4281	
4700 533.22(260.07)	VUHS	1.276 1129.3 1135.3 2.8855	42.081 2598.6 2796.4 6.0004	67.517 3004.3 3321.6 6.8545	70.304 3049.1 3379.5 6.9332	73.051 3093.7 3437.1 7.0089	75.765 3138.4 3494.5 7.0819	78.452 3183.1 3551.9 7.1527	81.116 3228.1 3609.3 7.2215	83.760 3273.3 3667.0 7.2885	88.997 3364.6 3782.9 7.4176	
4800 534.52(261.37)	VUHS	1.279 1135.6 1141.8 2.8974	41.161 2598.1 2795.7 5.9913	66.036 3003.3 3320.3 6.8434	68.773 3048.2 3378.3 6.9223	71.469 3092.9 3435.9 6.9981	74.132 3137.6 3493.4 7.0712	76.768 3182.4 3550.9 7.1422	79.381 3227.4 3608.5 7.2110	81.973 3272.7 3666.2 7.2781	87.109 3364.0 3782.1 7.4072	