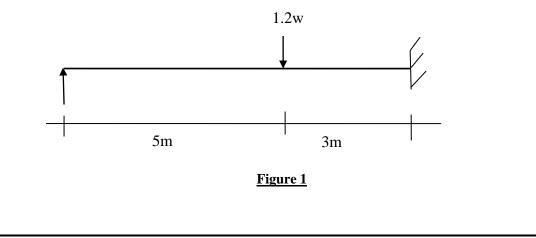


PROGRAM	:	NATIONAL DIPLOMA ENGINEERING : CIVIL
<u>SUBJECT</u>	:	STRUCTURAL ANALYSIS III
<u>CODE</u>	:	AIS3211
DATE	:	SUMMER EXAMINATION 09 NOVEMBER 2019
DURATION	:	(SESSION 1) 08:00 - 11:00
<u>WEIGHT</u>	:	40 : 60
TOTAL MARKS	:	100
ASSESSOR	:	MR F THAIMO
<u>ASSESSOR</u> MODERATOR		MR F THAIMO MR S JOUBERT
	:	MR S JOUBERT
MODERATOR	:	MR S JOUBERT
MODERATOR	:	MR S JOUBERT
MODERATOR NUMBER OF PAGES	:	MR S JOUBERT 4 PAGES NON-PROGRAMABLE POCKET CALCULATOR MAY

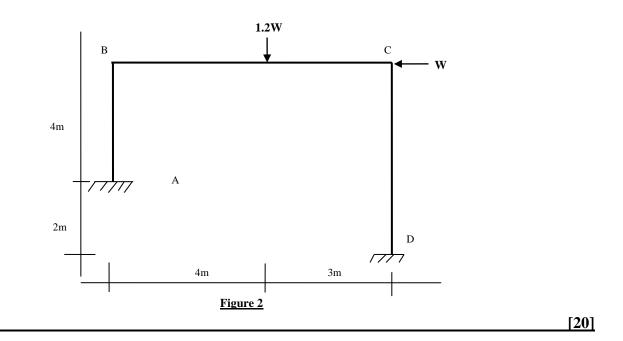

INSTRUCTIONS TO STUDENTS

PLEASE ANSWER ALL QUESTIONS

QUESTION 1

Figure below shows a propped cantilever beam subjected to a point load as shown on the figure.

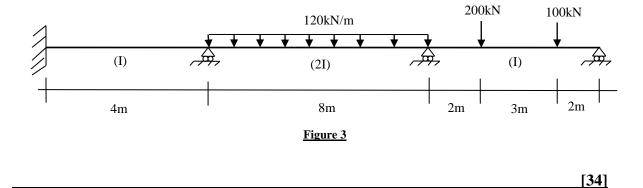
- a) Calculate the magnitude of the collapse load (W) if the fully plastic moment (M_P) of the beam section is 150kNm.
 (Please take note: use the STATIC METHOD, i.e. reactant and free bending moment, in your analysis)
- b) Calculate the reactions at the supports on the verge of collapse.


QUESTION 2

The frame shown below is fixed at both supports A and D. The fully plastic bending moment (M_P) is 200kNm.

- a) Under the loading shown, determine the collapse mode and the collapse load (w) on the verge of collapse.
 (Please note: use the VIRTUAL WORK (displacement) method in your analysis).
- b) Calculate the vertical and horizontal components of the reactions at the supports.

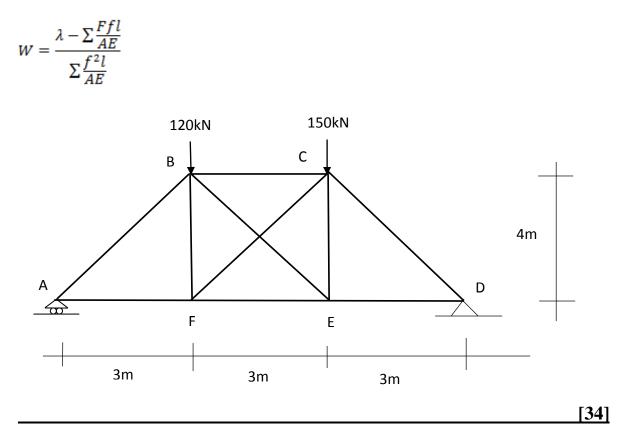
(Please note: no Bending Moment, Shear Force or Axial Force Diagrams are required).


[12]

QUESTION 3

The continuous beam shown below is of a cross-section with constant flexural rigidity (EI).

- a) Using MOMENT DISTRIBUTION method determine the reactant (end) moments at the supports.
- b) Calculate the support reactions.
- c) Draw the Shear Force and Bending Moment Diagrams for the beam on the graph paper provided.


QUESTION 1

The members of the truss shown below are made of material with modulus of elasticity (E) of 200GPa and cross-sectional area of 500 mm^2 .

The truss is subjected to loading as shown on the figure. Member B-E is the redundant member in the truss and was fabricated 6 mm too short.

Using Strain Energy method (Castigliano's Theorems), calculate the force in all the members of the truss.

Castigliano's equation is as follows:

TOTAL = 100