
$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$

PROGRAM	$:$ NATIONAL DIPLOMA
	CHEMICAL ENGINEERING
$\underline{\text { SUBJECT }}$	$:$ CHEMICAL PLANT 3B
$\underline{\text { CODE }}$	$:$ ACPB321
$\underline{\text { DATE }}$	$:$ SUMMER EXAMINATION
	$: 14$ NOVEMBER 2019
$\underline{\text { DURATION }}$	$: 40: 60$
$\underline{\text { WEIGHT }}$	$: 102$

EXAMINER(S) : MISS N.T SIBIYA
MODERATOR : DR J PILUSA
NUMBER OF PAGES : 4 PAGES

REQUIREMENTS : Use of scientific (non-programmable) calculator is permitted
(only one per candidate); graph paper

HINTS AND INSTRUCTIONS TO CANDIDATE(S):

- Purpose of assessment is to determine not only if you can write down an answer, but also to assess whether you understand the concepts, principles and expressions involved. Set out solutions in a logical and concise manner with justification for the steps followed.
- ATTEMPT ALL QUESTIONS. Please answer each question to the best of your ability.
- Write your details (module name and code, ID number,student number etc.) on script(s).
- Number each question clearly; questions may be answered in any order.
- Make sure that you read each question carefully before attempting to answer the question.
- Show all steps (and units) in calculations; this is a 'closed book' test.
- Ensure your responses are legible, clear and include relevant units (where appropriate).

QUESTION 1:

1.1.

Given:

Arrangement: Figure 1
Liquid: 50\% Sodium Hydroxide
Temperature: $86^{\circ} \mathrm{F}$
Static Suction Head: 8 feet
Altitude: Sea level
Blanket Pressure: 15 psig
Calculated Line Losses: 3 feet.

Find: (1) The Net Positive Suction Head available (NPSHA).
(2) The maximum acceptable Net Positive Suction Head required (NPSHR), take margin of safety to be $\mathbf{1 0}$ feet to rule out any potential for cavitation.

Liquid Properties

Vapor pressure: 3.9 mm Hg
Specific gravity: 1.514
Viscosity: 42 cP

Figure 1: pressurized vessel
1.2. Does excessive amount of air at the pump suction cause cavitation? You answer should be Yes or No and explain.
1.3. Explain why you would not choose centrifugal pump to pump fruits or vegetables(3)
1.4. Give two (2) advantage of diaphragm pump (4)
1.5. What is a valve? (3)
1.6. Define mixing(3)
1.7. Explain two types of liquid- liquid mixing (4)
QUESTION 2: [24]
2.1. What are the requirements for good combustion(4)
2.2. What is the importance of having an excess air in a boiler during combustion(4)2.3. A mixture of propane and butane is burned with pure oxygen. The combustion productscontain 7.4% mole $\mathrm{H}_{2} \mathrm{O}$. After all the water is removed from the products, the residual gascontains 69.4 mole $\% \mathrm{CO}_{2}$ and the balance O_{2}(16)
QUESTION 3:
3.1. Discuss the working principles of Saddle boiler(4)
3.2. Discuss the working principles of Packaged boilers (4)
3.3. How would you prevent oxidation or corrosion in the boiler (4)
3.4. Discuss four main problems encountered in a boiler (8)
QUESTION 4: [24]
4.1. What is the prime task of a cooling tower (2)
4.2. What are the working principles of cooling(6)
4.3. Make a clear distinction between natural and mechanical draft cooling towers/ include examples (12)
4.4. A cooling tower is designed to cool $11000 \mathrm{gal} / \mathrm{min}$ of water from $95^{\circ} \mathrm{F}$ to $82^{\circ} \mathrm{F}$. Calculatethe heat rejection and evaporation rate.

THE END:

FORMULA FHEET

$\frac{d Q}{d L}=n Q \quad$ and $Q=Q_{o} e^{n L}$
$\frac{K a}{L}=\int_{T_{2}}^{T 1} \frac{d T}{h^{\prime}-h}$
$\frac{L}{G}=\frac{\text { water flowrate }}{\text { air flowrate }}$
$\frac{L}{G}=\frac{h_{2}-h_{1}}{t_{1}-t_{2}}$
$F_{f}=0.96-0.28 \sqrt{\frac{P_{v}}{P_{c}}}$
$Q=k l$ and $\quad \frac{d Q}{d L}=k$
$\Delta P_{\text {cavitation }}=F_{i}^{2}\left(P_{1}-P_{v}\right)$
$C_{v}=Q \sqrt{\frac{S_{g}}{\Delta P}}$ or $C_{v}=\frac{1}{Q} \sqrt{\frac{\Delta P}{S_{g}}}$
$C_{v}=\frac{Q}{F_{p}} \sqrt{\frac{S_{g}}{\Delta P_{a}}}$
$h_{v}=\frac{2.31 P}{S_{g}}$
$h_{A}=\frac{2.31 P}{S_{g}}$
$\Delta P_{\text {chocked }}=F_{l}^{2}\left(P_{1}-F_{f} P_{v}\right)$
$R_{e}=\frac{N_{4} F_{d} Q}{v \sqrt{F_{l} C_{v}}}\left(\frac{F_{l}{ }^{2} C_{v}{ }^{2}}{N_{2} d^{4}}+1\right)^{0.25}$
$\mathrm{NPSH}_{A}= \pm h_{s}-h_{L}+h_{A}-h_{v}$
range $\left({ }^{\circ} \mathrm{C}\right)=\frac{\text { heatload }(\mathrm{kcal} / \mathrm{h})}{\text { watercirculation rate }}$

