

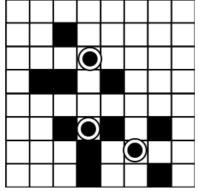
FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING						
MODULE CAMPUS	ILE CSC01A1 Introduction to algorithm development (C++)					
EXAMINAT	ION: June/J	uly SSA 2019				
DATE: 2019-06	/07					
ASSESSOR(S) PROF DA COULTER						
INTERNAL MODERATOR MR BR GREAVE						
DURATION	MARK	5 100				
SURNAME, INIT	IALS (or ID NU	JMBER):				
STUDENT NUM	BER:					
SR NR:						
CONTACT NR:						
NUMBER OF PA		-	ALCULATORS	ARE PERMITTED		
Marker:			<u>Subm</u>	ission overseen by:		
Sort Rank	<u>Result</u>	Moderation	<u>Correction</u>	Submission		
				CD:		
				USB:		
				EVE:	-	

Surname:		
Initials:		
Computer:		
-	Description	Desult
Competency	Description	Result
C0	Program Design	/10
C1	Boiler plate code Standard namespace (1) System library inclusion (3) Indication of successful termination of program (1) 	/5
C2	Coding style Naming of variables (1) Indentation (1) Use of comments (1) Use of named constants / ennumerations (1) Program compiles without issuing warnings (1) 	/5
C3	 Functional Abstraction Task decomposition (5) Reduction of repetitive code (5) 	/10
C4	Separate Compilation • Header file (1) • Guard conditions (2) • Inclusion of header file (1) • Appropriate content in header file (1) • Use of programmer defined namespace (5)	/10
C5	User Interaction Menu System (5) Appropriate use of input, output and error streams (5) 	/10
C6	Command Line Argument Handling: • Appropriately overloaded main function (1) • Handling incorrect argument counts (1) • Use of supplied arguments (3)	/5
C7	Error Handling Use of assertions (2) Use of conventional error handling techniques (1) 	/5
C8	Pseudo-random number generation (5)	/5
C9	Dynamically allocated two dimensional arrays of structures • Structures (5) • Allocation (5) • Initialisation (5) • Deallocation (5)	/20
C10	Algorithm implementation Logical Correctness (5) Effectiveness / Efficiency of approach (5) Correct output (5) 	/15
В	Bonus	/10
Total:	/100	

Markers Signature:_

I declare that I am eligible to write this summative assessment according to the rules and regulations of the Academy of Computer Science & Software Engineering, the Faculty of Science and the University of Johannesburg. I declare that the work submitted is my own and that I have verified the correctness of my electronic submissions.


I UNDERSTAND THAT NON-COMPILING CODE CANNOT BE AWARDED A PASSING MARK

Student Signature:_

.

CRYSTAL CLEAR

The Utopian Ministry for the Fourth Industrial Revolution would like you create a simulation to the crystallisation technique used within one of its automated factories for the manufacturing of consumer electronics. The crystallisation technique involves the introduction of seed material to a bath of dissolved minerals causing them to come out of solution as follows:

Seed (double circles), factory radius (large circle), crystal(black squares)

In the game you will simulate the evolution of a two-dimensional playing area. Your logic must be placed in the CrystalSpace namespace.

Initialisation:

- The size of the environment and number of seeds are specified via command line arguments.
- A fixed number of seeds are randomly placed in the environment. You will need to test if there is enough space in the game environment for the number of seeds given.
- There is a random amount of dissolved minerals which is an integer value which ranges between 50% to 100% of the number of squares in the game world.

Update:

- Every open space the game has the potential to become filled with crystal as follows:
 - A cumulative 10% chance for every seed within a 1 square radius, as well as...
 - ...a cumulative 5% chance for every crystal filled square in that same radius.
- Whenever a crystal square appears one unit of dissolved materials is removed from the counter.

End-game:

• The simulation ends when there are no empty spaces left or there is no more dissolved material left.

Consider the competencies as laid out in the mark sheet.

- C0 Create a program design. Your UML must model player movement.
- C1 Use your knowledge of basic C++ program structure and make sure to utilise the appropriate system libraries.
- C2 Your program must be readable by human beings in addition to compiler software.
- C3 Demonstrate your knowledge of the divide and conquer principle using functions.
- C4 Your program must make use of programmer defined source code libraries.
- C5 Create a menu system which will ask the user which action they wish to take.
- C6 The user must provide the number of rows and columns used by the simulation (reasonable maxima and minima should be imposed).
- C7 Provide assertion based error handling as well as conventional error handling.
- C8 Random numbers are used when initialising the game world.
- C9 Use dynamic 2D arrays and structures to implement your simulation. The data must be output to screen using printable ASCII characters.
- C10 Pay careful attention to the updating of the world and tests for the end of the game.
- Bonus Make use of C++11/14 features.