
FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC01A1
Introduction to algorithm development (C++)

CAMPUS APK

EXAMINATION: June/July SSA 2019

DATE: 2019-06/07

ASSESSOR(S) PROF DA COULTER

INTERNAL MODERATOR MR BR GREAVES

DURATION 3 HOURS MARKS 100

SURNAME, INITIALS (or ID NUMBER):__

STUDENT NUMBER: __

SR NR: __

CONTACT NR: __

NUMBER OF PAGES: 3 PAGES

REQUIREMENTS: NON-PROGRAMMABLE CALCULATORS ARE PERMITTED

Marker: Submission overseen by:

Sort Rank Result Moderation Correction Submission

CD:

USB:

EVE:

COMPUTER SCIENCE 1A CSC01A1 - 2 -

Mark sheet

Surname:

Initials:

Computer:

Competency Description Result

C0 Program Design /10

C1 Boiler plate code
 Standard namespace (1)
 System library inclusion (3)
 Indication of successful termination of program (1)

/5

C2 Coding style
 Naming of variables (1)
 Indentation (1)
 Use of comments (1)
 Use of named constants / ennumerations (1)
 Program compiles without issuing warnings (1)

/5

C3 Functional Abstraction
 Task decomposition (5)
 Reduction of repetitive code (5)

/10

C4 Separate Compilation
 Header file (1)
 Guard conditions (2)
 Inclusion of header file (1)
 Appropriate content in header file (1)
 Use of programmer defined namespace (5)

/10

C5 User Interaction
 Menu System (5)
 Appropriate use of input, output and error streams (5)

/10

C6 Command Line Argument Handling:
 Appropriately overloaded main function (1)
 Handling incorrect argument counts (1)
 Use of supplied arguments (3)

/5

C7 Error Handling
 Use of assertions (2)
 Use of conventional error handling techniques (1)

/5

C8 Pseudo-random number generation (5) /5

C9 Dynamically allocated two dimensional arrays of structures
 Structures (5)
 Allocation (5)
 Initialisation (5)
 Deallocation (5)

/20

C10 Algorithm implementation
 Logical Correctness (5)
 Effectiveness / Efficiency of approach (5)
 Correct output (5)

/15

B Bonus /10

Total: /100

Markers Signature:__

I declare that I am eligible to write this summative assessment according to the rules and regulations of the Academy of
Computer Science & Software Engineering, the Faculty of Science and the University of Johannesburg. I declare that the
work submitted is my own and that I have verified the correctness of my electronic submissions.

I UNDERSTAND THAT NON-COMPILING CODE CANNOT BE AWARDED A PASSING MARK

Student Signature:___

.

COMPUTER SCIENCE 1A CSC01A1 - 3 -

CRYSTAL CLEAR
The Utopian Ministry for the Fourth Industrial Revolution would like you create a simulation to the
crystallisation technique used within one of its automated factories for the manufacturing of consumer
electronics. The crystallisation technique involves the introduction of seed material to a bath of
dissolved minerals causing them to come out of solution as follows:

Seed (double circles), factory radius (large circle), crystal(black squares)
In the game you will simulate the evolution of a two-dimensional playing area. Your logic must be
placed in the CrystalSpace namespace.

Initialisation:
 The size of the environment and number of seeds are specified via command line arguments.
 A fixed number of seeds are randomly placed in the environment. You will need to test if there

is enough space in the game environment for the number of seeds given.
 There is a random amount of dissolved minerals which is an integer value which ranges

between 50% to 100% of the number of squares in the game world.
Update:

 Every open space the game has the potential to become filled with crystal as follows:
▪ A cumulative 10% chance for every seed within a 1 square radius, as well as...
▪ ...a cumulative 5% chance for every crystal filled square in that same radius.

 Whenever a crystal square appears one unit of dissolved materials is removed from the
counter.

End-game:
 The simulation ends when there are no empty spaces left or there is no more dissolved

material left.

Consider the competencies as laid out in the mark sheet.
 C0 – Create a program design. Your UML must model player movement.
 C1 – Use your knowledge of basic C++ program structure and make sure to utilise the

appropriate system libraries.
 C2 – Your program must be readable by human beings in addition to compiler software.
 C3 – Demonstrate your knowledge of the divide and conquer principle using functions.
 C4 – Your program must make use of programmer defined source code libraries.
 C5 – Create a menu system which will ask the user which action they wish to take.
 C6 – The user must provide the number of rows and columns used by the simulation

(reasonable maxima and minima should be imposed).
 C7 – Provide assertion based error handling as well as conventional error handling.
 C8 – Random numbers are used when initialising the game world.
 C9 – Use dynamic 2D arrays and structures to implement your simulation. The data must be

output to screen using printable ASCII characters.
 C10 – Pay careful attention to the updating of the world and tests for the end of the game..

 Bonus – Make use of C++11/14 features.

.

