
FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

MODULE CSC01A1
Introduction to algorithm development (C++)

CAMPUS APK

EXAMINATION: June/July SSA 2019

DATE: 2019-06/07

ASSESSOR(S) PROF DA COULTER

INTERNAL MODERATOR MR BR GREAVES

DURATION 3 HOURS MARKS 100

SURNAME, INITIALS (or ID NUMBER):__

STUDENT NUMBER: __

SR NR: __

CONTACT NR: __

NUMBER OF PAGES: 3 PAGES

REQUIREMENTS: NON-PROGRAMMABLE CALCULATORS ARE PERMITTED

Marker: Submission overseen by:

Sort Rank Result Moderation Correction Submission

CD:

USB:

EVE:

COMPUTER SCIENCE 1A CSC01A1 - 2 -

Mark sheet

Surname:

Initials:

Computer:

Competency Description Result

C0 Program Design /10

C1 Boiler plate code
 Standard namespace (1)
 System library inclusion (3)
 Indication of successful termination of program (1)

/5

C2 Coding style
 Naming of variables (1)
 Indentation (1)
 Use of comments (1)
 Use of named constants / ennumerations (1)
 Program compiles without issuing warnings (1)

/5

C3 Functional Abstraction
 Task decomposition (5)
 Reduction of repetitive code (5)

/10

C4 Separate Compilation
 Header file (1)
 Guard conditions (2)
 Inclusion of header file (1)
 Appropriate content in header file (1)
 Use of programmer defined namespace (5)

/10

C5 User Interaction
 Menu System (5)
 Appropriate use of input, output and error streams (5)

/10

C6 Command Line Argument Handling:
 Appropriately overloaded main function (1)
 Handling incorrect argument counts (1)
 Use of supplied arguments (3)

/5

C7 Error Handling
 Use of assertions (2)
 Use of conventional error handling techniques (1)

/5

C8 Pseudo-random number generation (5) /5

C9 Dynamically allocated two dimensional arrays of structures
 Structures (5)
 Allocation (5)
 Initialisation (5)
 Deallocation (5)

/20

C10 Algorithm implementation
 Logical Correctness (5)
 Effectiveness / Efficiency of approach (5)
 Correct output (5)

/15

B Bonus /10

Total: /100

Markers Signature:__

I declare that I am eligible to write this summative assessment according to the rules and regulations of the Academy of
Computer Science & Software Engineering, the Faculty of Science and the University of Johannesburg. I declare that the
work submitted is my own and that I have verified the correctness of my electronic submissions.

I UNDERSTAND THAT NON-COMPILING CODE CANNOT BE AWARDED A PASSING MARK

Student Signature:___

.

COMPUTER SCIENCE 1A CSC01A1 - 3 -

CRYSTAL CLEAR
The Utopian Ministry for the Fourth Industrial Revolution would like you create a simulation to the
crystallisation technique used within one of its automated factories for the manufacturing of consumer
electronics. The crystallisation technique involves the introduction of seed material to a bath of
dissolved minerals causing them to come out of solution as follows:

Seed (double circles), factory radius (large circle), crystal(black squares)
In the game you will simulate the evolution of a two-dimensional playing area. Your logic must be
placed in the CrystalSpace namespace.

Initialisation:
 The size of the environment and number of seeds are specified via command line arguments.
 A fixed number of seeds are randomly placed in the environment. You will need to test if there

is enough space in the game environment for the number of seeds given.
 There is a random amount of dissolved minerals which is an integer value which ranges

between 50% to 100% of the number of squares in the game world.
Update:

 Every open space the game has the potential to become filled with crystal as follows:
▪ A cumulative 10% chance for every seed within a 1 square radius, as well as...
▪ ...a cumulative 5% chance for every crystal filled square in that same radius.

 Whenever a crystal square appears one unit of dissolved materials is removed from the
counter.

End-game:
 The simulation ends when there are no empty spaces left or there is no more dissolved

material left.

Consider the competencies as laid out in the mark sheet.
 C0 – Create a program design. Your UML must model player movement.
 C1 – Use your knowledge of basic C++ program structure and make sure to utilise the

appropriate system libraries.
 C2 – Your program must be readable by human beings in addition to compiler software.
 C3 – Demonstrate your knowledge of the divide and conquer principle using functions.
 C4 – Your program must make use of programmer defined source code libraries.
 C5 – Create a menu system which will ask the user which action they wish to take.
 C6 – The user must provide the number of rows and columns used by the simulation

(reasonable maxima and minima should be imposed).
 C7 – Provide assertion based error handling as well as conventional error handling.
 C8 – Random numbers are used when initialising the game world.
 C9 – Use dynamic 2D arrays and structures to implement your simulation. The data must be

output to screen using printable ASCII characters.
 C10 – Pay careful attention to the updating of the world and tests for the end of the game..

 Bonus – Make use of C++11/14 features.

.

