

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

MODULE CEM1A3E/3EA1

INTRODUCTION TO GENERAL CHEMISTRY

CAMPUS APK

EXAM 29 MAY 2019

DATE: SESSION:

JULY 08:00 - 11:00

ASSESSOR(S) DR O ZINYEMBA

INTERNAL MODERATOR DR A ADEYINKA

DURATION 2½ HOURS MARKS 82

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

- 1. THIS PAPER CONSISTS OF 8 PAGES AND A PERIODIC TABLE.
- 2. ANSWER ALL QUESTIONS.
- 3. ALL ANSWERS MUST BE GIVEN TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES.
- **4.** THE USE OF CELL PHONES AND OTHER ELECTRONIC COMMUNICATION DEVICES IS **FORBIDDEN** AND THEY MUST BE SWITCHED OFF. NO DATA/IMAGE STORING DEVICES, INCLUDING CALCULATORS CAPABLE OF SUCH, ARE PERMITTED IN THIS EXAMINATION.
- **5.** THIS IS A CLOSED BOOK EXAMINATION. YOU ARE **NOT ALLOWED** TO HAVE ANY BOOK, MEMORANDUM, NOTES, PAPER, PHOTOGRAPHS, DOCUMENT OR WRITTEN/PRINTED MATERIAL OTHER THAN THE QUESTION PAPER AND THE ANSWER BOOKS PROVIDED BY THE EXAMINER/INVIGILATOR. IF YOU NEED PAPER FOR ROUGH WORK, AN ADDITIONAL EXAM ANSWER SHEET WILL BE GIVEN TO YOU, WHICH MUST BE CLEARLY LABELLED AS **ROUGH WORK: NOT FOR MARKING**, AND HANDED IN TOGETHER WITH THE QUESTION PAPER AND ALL YOUR ANSWER BOOKS.

SECTION A [26 Marks] [Multi choice questions: Only one answer is correct]

- 1. When the cations Na⁺, K⁺, Rb⁺, Cs⁺ are combined with chloride ion in the gas phase to form ion pairs, which pair formation releases the greatest amount of energy?
 - A. NaCl
 - B. KCl
 - C. RbCl
 - D. CsCl
 - E. All release the same amount of energy.
- 2. Which of the following processes is not exothermic?
 - A. $Cs^+(g) + e^- \rightarrow Cs(g)$
 - B. $F(g) + e^- \rightarrow F^-(g)$
 - C. $Cs^+(g) + F^-(g) \rightarrow CsF(s)$
 - D. $Cs(g) \rightarrow Cs(s)$
 - E. $\frac{1}{2}F_2(g) \rightarrow F(g)$
- 3. Which set of ions are isoelectronic in their ground-state electron configurations?
 - A. Na⁺, K⁺, Rb⁺, Cs⁺
 - B. Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+}
 - C. N, O, F, Ne
 - D. F⁻, Cl⁻, Br⁻, I⁻
 - E. N^{3-} , O^{2-} , Mg^{2+} , Al^{3+}
- 4. The Lewis structure for each of the following <u>except</u> ____contains at least one double bond.
 - A. CS_2
 - B. NO⁺
 - C. C₂H₄
 - D. N_2H_2
 - $E O_2$
- 5. For each of the following species <u>except</u> _____, the electronic structure may be adequately described by two resonance formulas.
 - A. O_3
 - B. SO_2
 - C. NO_2^-
 - D. SO_3^{2-}
 - E C_6H_6

Introduction to General Chemistry

- 6. In which of the following molecules is the octet rule violated?
 - A. PF₃
 - B. SiF₄
 - C OF_2
 - D. ClF₃
 - E ClF
- 7. From a consideration of the Lewis structure of the thiocyanate ion, SCN⁻, in which carbon has a double bond with both the sulfur and nitrogen atoms, the formal charges on the sulfur, carbon, and nitrogen atoms are, respectively,
 - A. -1, 0, 0.
 - B 0, 0, -1.
 - C -1, +1, -1.
 - D -2, +1, 0.
 - E -2, 0, +1.
- 8. Which molecule or ion has the same molecular geometry for its central atom as the carbonate ion?
 - A. BrO_3^-
 - B. AsCl₃
 - C. CH₃⁻
 - D. H₂CO
 - E. PF₃
- 9. The reaction quotient for a system is 7.2×10^2 . If the equilibrium constant for the system is 36, what will happen as equilibrium is approached?
 - A. There will be a net gain in product.
 - B. There will be a net gain in reactant.
 - C. There will be a net gain in both product and reactant.
 - D. There will be no net gain in either product or reactant.
 - E The equilibrium constant will decrease until it equals the reaction quotient.
- 10 Which of the following statements is <u>incorrect</u> concerning the addition of a catalyst to an equilibrium reaction system?
 - A. The catalyst increases the rate of both the forward and the reverse reaction.
 - B. If the reactants are capable of forming many different products, a catalyst may selectively speed up one reaction over another.
 - C. The catalyst speeds up the attainment of equilibrium.
 - D. The catalyst increases the yield of the products.
 - E. The catalyst is not consumed in either the forward or the reverse reaction.

Introduction to General Chemistry

11. In the following list of pairs of ions, which is the more acidic?

$$Fe^{2+}$$
 or Fe^{3+} ; Cu^{2+} or Cu^+ ; Co^{2+} or Co^{3+}

- E. None of the above
- 12. Which acid/base definition best fits this reaction?

$$H_2SO_4$$
 (aq) + NaOH (aq) \rightarrow NaHSO₄ (aq) + H_2O (l)

- A. Lewis
- B. Brønsted-Lowry
- C. Arrhenius
- D. All of the above
- E. None of the above
- 13. Which of the following statements is true concerning the two compounds 2,3-dimethylpentane and 2,4-dimethylpentane?
 - A. Because the two compounds are structural isomers, they should have identical physical properties.
 - B. Because the two compounds are structural isomers, they should have the same molecular formula.
 - C. Because the two compounds are structural isomers, they should have identical chemical properties.
 - D. Because the two compounds are geometric isomers, one should be *cis* and the other should be *trans*.
 - E. Because the two compounds are enantiomers, they should rotate polarized light in opposite directions.

SECTION B [56 Marks] [Answer all Questions]

Question 1 [9 Marks]

- 1.1 Which has a larger radius S or S^{2-} ? Explain. (3)
- 1.2 With the aid of formal charges, draw the best representative Lewis structure for the sulphurous acid molecule H₂SO₃. **Show all steps** of how you reach your conclusion. (6)

Question 2 [11 Marks]

- 2.1 Explain in detail why nitrogen trifluoride NF₃ has a smaller dipole moment than NH₃ although N-F bonds are more polar than the N-H bonds and both structures trigonal pyramidal. Use Lewis structures to clarify your answer. (5)
- 2.2
 - (a) Draw the Lewis structure of XeF_2O (3)
 - (b) What is the electron domain geometry of XeF_2O ? (1)
 - (c) What is the molecular geometry of XeF_2O ? (1)
 - (d) By visually analysing the Lewis structure you have drawn, determine the hybridisation of XeF₂O. (1)

Question 3 [10 Marks]

- 3.1 A bacterial culture isolated from sewage produced 35.5 mL of methane, CH₄, at 31 °C and 753 mmHg. What is the volume of this methane at standard temperature and pressure (0 °C, 760 mmHg)? (4)
- 3.2 (a) Calculate the density of helium, He, in grams per litre at 21 °C and 752 mm Hg. The density of air under these conditions is 1.188 g/L. (5)
 - (b) What is the difference in mass between 1 litre of air and 1 litre of helium? (Hint: the mass difference is equivalent to the buoyant, or lifting, force of helium per litre). (1)

Question 4 [9 Marks]

Phosphorous pentachloride, PCl₅, decomposes when heated.

$$PCl_5(g) = PCl_3(g) + Cl_2(g)$$

If the initial concentration of PCl_5 is 1.00 mol/L, what is the equilibrium composition of the gaseous mixture at 160 °C? The equilibrium constant Kc at 160 °C is 0.0211

Question Five [10 Marks]

- 5.1 Explain why for the series of oxoacids, HClO,HClO₂,HClO₃,HClO₄ the acid strength increases from left to right. (2)
- 5.2 Define an acid and a base according to the Lewis concept. Give an example of such an acid-base equation and identify each species as an acid or base. (4)
- 5.3 Decide whether aqueous solutions of NaF is basic, acidic or neutral. Use equation(s) to help explain your answer. (4)

Question 6 [7 Marks]

- 6.1 Write an equation for a possible substitution reaction of ethane, C_2H_6 , with Cl_2 . (2)
- 6.2 Complete the following equation, giving only the main product. (1)

$$CH_2 = CHCH_3 + H - OH \frac{H_2SO_4}{catalyst}$$

6.3 Redraw the structure, circle and name the functional group in each of the following compounds. (4)

a.
$$CH_3$$
— C — $CH_2CH_2CH_3$
b. CH_3 — C — CH_2CH_3
H

o

o

the second of the seco

																						Γ		_ 0	_]	П
	18/VIII	7	e e	3	ه و	0.18	18	Ā	9.95	. 98	<u>۔</u>	3.80	54	×e	31.3	98	۳ چ	22.0			П	1	_	_	⊢	L 190	4	
	~[_	4		_	-		_			-	-	_		_	_	_					2 3	173.0	102	No		
				-	ெ ட	_	_		_		_	-	_	_	_	_	_	\neg			-		و ا ا	L H	101	Md	3	
			16/		∞ O	16.0	16	တ	32.0	34	Š	78.9	52	<u>e</u>	127.0	84	<u>م</u>	210.0				-	_		\vdash	Fm	-	
			74	2	۲Z	14.01	15	۵.	30.97	33	As	74.92	51	Sp	121.8	83	Ξ	209.0				l ⊦		_	⊢		4	
			/1/ /	4	ە ن	2.01	14	.is	8.09	32	ge	2.61	20	S	18.7	82	<u>م</u>	07.2				۱ ⊦		_	\vdash	Es	4	
				Н	ഹ മ	_	_		7.0	_			-	_	_			-			p block		8 2	J62.5	86	۲۶		
			5	2		10.	7		\dashv	_		\dashv	_		_	_	_	\dashv			b b	. [8 1	158.9	97	Bk		
									12	8	Z	65.3	48	ပိ	112.	80	Η	200.					_		\vdash	Cm	┨	
									1	53	J C	63.55	47	Ag	107.9	79	Αn	197.0				ŀ			⊢		+	
									10	58	ž	8.69	46	Pd	06.4	78	£	95.1	•			 -	_		\vdash	Am 243.1	1	
				_					- 1	-	-	-	-	-	-	_		-	Une .	7		1	5 6	150.4	94	Pu	3	
		-	ΞŞ	900					- 1	-	_	-	-	-	-	-	-	+	.,	1			5 6	144.9	93	N 272	1	
	L			_					1	7	_	\dashv	-	_	-	_		-	Cr ₂	4			8 7	44.2	92) S	3	
									7	25	Z	54.94	43	ر ا	98.91	75	Re	186.2	Uns			H	_	-	\vdash	Pa	+	
									9	24	ວັ	52.00	42	ο Σ	95.94	74	>	183.8	Unh Unh			h			\vdash		1	
									1	_		\dashv	_	_		_		-	Unp	1		-	_		⊢	T,	_	
										_		-+	_		-	_		-	Jng U	+			2	138.9	88	Ac		f block
<u>e</u>									4	_	=	-	_	_			_	-		1	충			sep /	/	<u></u>	-	_
Tab				_					က	2	သိ	44.96	33	>	88.91	-	3 =	3	Aç-		d block	_	<u>'</u>	Lanthanides \		Actinides		
dic			c	,	₽	9.012	12	Mg	24.30	20	Ca	40.08	38	Š	87.62	99	Ba	137.3	Ra	720.0			•	2		ď		
The Periodic Table				-	ლ :⊐	.941	_	Na	-	19		-			_	55	ပ္သ	-+	Fr Fr	73.0	s block					,		
е Р				L	7	9		e	~	_	4	ကျ		2	80		9			<u>"</u>	ြ							
Ļ											p	oi	19	Ь														

Introduction to General Chemistry

TABLE	15.2	Relative Strengths of Acids and Bases									
		Acid	Base								
Strongest		HClO ₄	ClO ₄	Weakest							
acids		H_2SO_4	${ m HSO_4}^-$	bases							
		HI	I^-	Î							
		HBr	Br^-								
		HCl	Cl ⁻								
		HNO_3	NO_3^-								
		H_3O^+	H_2O								
		HSO ₄	SO_4^{2-}								
		H_2SO_3	HSO ₃								
		H_3PO_4	$\mathrm{H_2PO_4}^-$								
		HNO_2	NO_2^-								
		HF	F^{-}								
		$HC_2H_3O_2$	$\mathrm{C_2H_3O_2}^-$								
		$Al(H_2O)_6^{3+}$	$Al(H_2O)_5OH^{2+}$								
		H_2CO_3	HCO ₃								
		H_2S	HS ⁻								
		HClO	ClO ⁻								
		HBrO	BrO^-								
		$\mathrm{NH_4}^+$	NH_3								
		HCN	CN^-								
		HCO ₃	CO_3^{2-}								
		H_2O_2	$\mathrm{HO_2}^-$								
+		HS^-	S^{2-}								
Weakest acids		H ₂ O	OH ⁻	Strongest bases							

CONSTANTS

 $Gas\ constant = 0.08206L \bullet atm/K \bullet mol$