

QUESTION 1

1.1 Using Hard and Soft Acid and Base Principles (HSAB) predict which direction, forward or reverse, the following reactions will proceed and explain why.

$$
\begin{align*}
& \text { a) } 2 \mathrm{CH}_{3} \mathrm{MgF}+\mathrm{HgF}_{2} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Hg}+2 \mathrm{MgF}_{2} \tag{2}\\
& \text { b) } \mathrm{CdSe}+\mathrm{HgS} \rightleftharpoons \mathrm{CdS}+\mathrm{HgSe} \tag{2}
\end{align*}
$$

1.2 Arrange the following ions in order of increasing Brønsted acidity and account for this trend. $\left[\mathrm{Al}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+},\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Fe}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$
1.3 Which is the stronger base between PH_{3} and PF_{3} ? Give an explanation for your answer.
1.4 Use Drago-Wayland E and C parameters to calculate ΔH for the reactions of BF_{3} and $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$ and diethyl sulphide $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ S. Give two reasons for the difference in reactivity.

QUESTION 2

2.1 Draw the structures of all possible stereoisomers of the octahedral complex $\left[\mathrm{Fe}(\mathrm{en})(\mathrm{ox}) \mathrm{Br}_{2}\right]^{-}$and the square planar complex $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{BrCl}\right]$.
2.2Write the structural formula for the isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}$ and [Co(o-phen) $\left.)_{2}\left(\mathrm{NH}_{3}\right)(\mathrm{SCN})\right] \mathrm{Cl}$. In each case, specify which kind of isomerism is exhibited.
2.3 Give the IUPAC name for $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})_{2}\right] \mathrm{Br}$
2.4What is the electron configuration, coordination number, geometry and oxidation state of Ni in $\left[\mathrm{NiCl}_{4}\right]^{2-}$?
2.5Draw the structure of the $\left[\mathrm{Fe}(\mathrm{ox})_{3}\right]^{3-}$ complex ion, give the denticity of the ligand and state how many chelate rings this complex ion contains.

QUESTION 3

3.1 When the d-orbitals of a transition metal ion are split in energy (in an octahedral ligand field) which orbitals are raised least in energy?
3.2What are the factors that lead to an increase in the magnitude of $\Delta \mathrm{o}$ in coordination compounds?
3.3 The complex ion $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]^{3-}$, is an octahedral complex with bidentate carbonate ions $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ as ligands, has one absorption band in the visible region of the UVvisible spectrum at 700 nm .
a) Predict the colour of this complex, and explain your reasoning.
b) Is the carbonate ion a weak- or strong-field ligand? Explain.
c) Give the d-orbital electron configuration and predict how many unpaired electrons are present in $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]^{3-}$. Further deduce whether the complex is paramagnetic or diamagnetic.
d) Calculate the Crystal Field Stabilization Energy (CFSE) of $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]^{3-}$ in units of Δ_{0} and the magnetic moment.
3.4 Which of the following is the stronger acid? Which has the higher Δ_{0} ? Briefly rationalize your choices.
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

QUESTION 4

4.1 Calculate the ground state spectroscopic term symbol for a d^{2} free ion. Show all your calculations.
4.2 The absorption spectra shown below are of three octahedral complexes \mathbf{A}, \mathbf{B} and C.

a) Which spectrum is more likely to be that of a d ${ }^{1}$ metal ion and why?
b) Is the colour of complex \mathbf{B}, orange, green or violet? Explain
c) What is the approximate value of Δ_{o} for complex \mathbf{B} ?
d) Which complex has the highest value of Δ_{0} ?
4.2 Bushveld minerals, a South African mining company, found a magnetite layer from which they isolated an unknown transition metal ion with one d electron. This metal electron absorbs light with a wavelength of 640 nm , and the absorption band has a molar absorptivity (ε) of 8 .
a) Is this absorption a charge transfer (CT) or a d-d transition absorption band? Explain.
b) What colour of light was absorbed and what colour will a solution of this ion have?
c) Will the colour be intense, of moderate intensity or weak? Explain
d) What is the energy of this absorption in cm^{-1} ?
e) From the following transition metal ions, which one is likely the unknown metal ion: $\mathrm{Cr}^{3+}, \mathrm{V}^{4+}, \mathrm{Fe}^{3+}$. Why?

QUESTION 5

5.1 For $[\mathrm{Pd}(\mathrm{CN}) 4]^{2-}$ a value of $\log \beta_{4}$ of 62.3 has been determined. To what equilibrium process does this value refer?
5.2 Arrange the following metal ions in order of increasing stability with oxalic acid and explain your answer.

$$
\mathrm{Cu}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+} \text { and } \mathrm{Ni}^{2+}
$$

5.2 Explain the macrocyclic effect with the aid of an example? In your answer also explain which thermodynamic term(s) drive this effect?

QUESTION 6

6.1 Design a selective two-step synthesis for cis- and trans-[Pt($\left.\left.\mathrm{NH}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{2}\right]$ starting with $\left[\mathrm{PtCl}_{4}\right]^{2-}$. Briefly explain your chosen synthetic procedure.
6.2 Shown below is a two-step dissociative mechanism process for the substitution of a ligand X with Y in an octahedral complex.

a) If the rate-determining step is addition of the entering ligand Y to the intermediate, [ML5], draw a reaction profile (reaction energy diagram) for this process.
b) If the rate of substitution is dependent on the nature of the incoming ligand, Y , how would you denote the mechanism of this reaction?

End of paper - Total marks $=100$
Supplementary information starts on the next page

Useful Equations and Supplementary Information

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}-(1 / \mathrm{n}) \log \left[\mathrm{M}^{\mathrm{n}+}\right]-5.6 / n$
Pauling's $\mathrm{OpE}(\mathrm{OH}) \mathrm{q}, \mathrm{pK}_{\mathrm{a}} \approx 9-7 \mathrm{p}$.
Bell's rule : $\mathrm{OpE}(\mathrm{OH}) \mathrm{q}, \mathrm{pK} \mathrm{K}_{\mathrm{a}} \approx 8-5 \mathrm{p}$.
Spin-only formula: $\mu_{s}=2\{S(S+1)\} 1 / 2 B M=\{n(n+2)\} 1 / 2 B M$
$-\Delta H=E_{A} E_{B}+C_{A} C_{B}$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$ and $\Delta G^{\circ}=-R T$ InK
$\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Planck's constant $(\mathrm{h})=6.62661 \times 10^{-34} \mathrm{Js}$
Speed of light (c) $=2.9970 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Avogadro's number $=6.02214 \times 10^{23}$ molecules $/ \mathrm{mol}$

Drago's C_{A}, E_{A}, C_{B}, and E_{B} values

TABLE $6.8 \quad C_{A}, E_{A}, C_{B}$, and E_{B} Values ($\mathrm{kcal} / \mathrm{mol}$)

Acid	$C_{\text {A }}$	E_{A}
Trimethylboron, $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$	1.70	6.14
Boron trifluoride (gas), BF_{3}	1.62	9.88
Trimethylaluminum, $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$	1.43	16.9
lodine (standard), I_{2}	1.00*	1.00*
Trimethylgallium, $\mathrm{Ga}\left(\mathrm{CH}_{3}\right)_{3}$	0.881	13.3
lodine monochloride, ICI	0.830	5.10
Sulfur dioxide, SO_{2}	0.808	0.920
Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$	0.442	4.33
tert-butyl alcohol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$	0.300	2.04
Pyrrole, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NH}$	0.295	2.54
Chloroform, CHCl_{3}	0.159	3.02
Base	C_{B}	E_{B}
1-Azabicyclo[2.2.2] octane,		
Quinuclidine, $\mathrm{HC}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3} \mathrm{~N}$	13.2	0.704
Trimethylamine, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	11.54	0.808
Triethylamine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$	11.09	0.991
Dimethylamine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	8.73	1.09
Diethyl sulfide, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{~S}$	7.40*	0.399
Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	6.40	1.17
Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$	5.88	1.30
Ammonia, NH_{3}	3.46	1.36
Diethyl ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	3.25	0.963
N, N-dimethylacetamide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCOCH}_{3}$	2.58	1.32*
Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$	0.681	0.525

[^0]
The Spectrochemical Series

$\mathrm{CO}, \mathrm{CN}^{-}>\mathrm{PPh}_{3}>$ phen $>\mathrm{NO}_{2}^{-}>$en $>\mathrm{NH}_{3}>\mathrm{NCS}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}^{-}>\mathrm{RCO}_{2}^{-}>\mathrm{OH}^{-}>\mathrm{Cl}^{-}>\mathrm{Br}^{-}>\mathrm{I}^{-}$ Strong field, low spin π-acceptor σ-donor only

Weak field, high spin π-donor

Table and colour wheel of visible light and their complimentary colours

Wavelength Range (nm)	Wave Numbers $\left(\mathrm{cm}^{-1}\right)$	Color	Complementary Color
<400	$>25,000$	Ultraviolet	
$400-450$	$22,000-25,000$	Violet	Yellow
$450-490$	$20,000-22,000$	Blue	Orange
$490-550$	$18,000-20,000$	Green	Red
$550-580$	$17,000-18,000$	Yellow	Violet
$580-650$	$15,000-17,000$	Orange	Blue
$650-700$	$14,000-15,000$	Red	Green
>700	$<14,000$	Infrared	

© 2011 Pearson Education, Inc.

d^{2} Tanabe-Sugano Diagram

d^{4} Tanabe-Sugano Diagram

d^{3} Tanabe-Sugano Diagram

d^{5} Tanabe-Sugano Diagram

d^{6} Tanabe-Sugano Diagram
 d^{8} Tanabe-Sugano Diagram
d^{7} Tanabe-Sugano Diagram

The Periodic Table

炡

[^0]: NOTE: *Reference values.
 Source: Data from R. S. Drago, J. Chem. Educ., 1974, 51, 300.
 © 2011 Pearson Education, Inc.

