FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY	
MODULE:	CEM2A20 / CEM 02A2 (Intermediate Physical Chemistry)
CAMPUS:	APK
EXAM	Supplimentary Exam - 2019

DATE: June 2019
ASSESSOR:
MODERATOR:
DURATION: 3 Hours

TIME:
Dr. S. Sitha
Prof. R. Meijboom
Total Marks: 100

NUMBER OF PAGES: 4 Pages (Including this page and a periodic table)
INSTRUCTIONS: Answer all the questions. Using of a non-graphing scientific calculator is allowed.

Important Equations \& Physical Constants:

Trigonometric identities:	$\operatorname{Sin}^{2} \theta=\frac{1-\cos 2 \theta}{2}$	$\sin 2 \theta=2 \sin \theta \cdot \cos \theta$ $2 \operatorname{Sin} \theta \cdot \operatorname{Sin} \phi=\operatorname{Cos}(\theta-\phi)-\operatorname{Cos}(\theta+\phi)$

Planck's Constant	h	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~S}$,	$6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~S}^{-1}$
Universal Gas Constant	R	$8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$,	$1.986 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$,
		$0.082 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$,	

Question 1:

(10 marks)
Consider a system containing 63.998 grams of O_{2} (an ideal gas). This system then undergoes an isothermal reversible expansion process at $25^{\circ} \mathrm{C}$. During this process the volume changed from 15.0 litres to 50.0 L . Calculate the change in internal energy, work-done, heat exchanged and change in entropy during the process.

Question 2:

(23 marks)
Consider a system containing 20.0 L of gaseous N_{2} (an ideal gas) is at 10 atm pressure and $25^{\circ} \mathrm{C}$ of temperature. The system undergoes an adiabatic reversible expansion process until the pressure got reduced to 1 atm . Calculate the workdone.

Question 3:

(6 marks)
In a thermal fuel cell, a combustion reaction of propane is happening at standard temperature condition. Calculate change in the standard Gibbs' free energy for the reaction using the data shown below.
$\Delta_{\mathrm{i}} \mathrm{G}^{0}$ of $\mathrm{CO}_{2}(\mathrm{~g})=-394.36 \mathrm{~kJ} . \mathrm{mol}^{-1}$
$\Delta_{\mathrm{t}} \mathrm{G}^{0}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-237.13 \mathrm{~kJ} . \mathrm{mol}^{-1}$
$\Delta_{\mathrm{f}} \mathrm{G}^{0}$ of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})=-23.49 \mathrm{~kJ} . \mathrm{mol}^{-1}$

Question 4:

(7 marks)
When ammonia gas reacts with gaseous oxygen it produces gaseous nitric oxide and water vapor. If the change in internal energy for the reaction is 9080.0 J and the change in the entropy for the reaction is $35.7 \mathrm{JK}^{-1}$ at $27^{\circ} \mathrm{C}$, using Gibb's free energy equation, predict whether at $27^{\circ} \mathrm{C}$, the reaction is spontaneous or not.

Question 5:

(4 marks)
Calculate the change in Gibb's Free energy for the following reaction and predict whether the reaction is spontaneous under standard conditions or not?

$$
4 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow 3 \mathrm{KClO}_{4(\mathrm{~s})}+\mathrm{KCl}_{(\mathrm{s})}
$$

Given:

	$\Delta H_{f}^{0}(\mathrm{~kJ} / \mathrm{mol})$	$S^{0}(\mathrm{~J} / \mathrm{mol} . \mathrm{K})$
$\mathrm{KClO}_{3(\mathrm{~s})}$	-397.7	143.1
$\mathrm{KClO}_{4(\mathrm{~s})}$	-432.8	151.0
$\mathrm{KCl}_{(\mathrm{s})}$	-436.7	82.6

Question 6:

A quantum mechanical particle is confined to move in one dimension between x $=0$ and $x=L$.
(a) Write the mathematical expression for the wave function of the above particle in its ground state.
(b) Determine the value of the normalization constant, ' \boldsymbol{A} ' and write the final normalized wave function.
(c) Using the normalized wave function as found in the part 2(a), find the probability that the particle will be found between $x=0$ and $x=L / 3$.

Question 7:

(8 marks)
Show that the function $e^{-3 i k x}$ is eigenfunction of one dimensional kinetic energy operator. What is the eigen value?

Question 8:

(25 marks)
(a) In a gaseous reaction, the time for half change ($\mathrm{t}_{1 / 2}$) for various initial partial pressures (P) are recorded as follows:

$\mathbf{P}(\mathbf{m m ~ o f ~ H g})$	500	600	800	1000
$\mathbf{t}_{1 / 2}(\mathrm{mins})$	268	223	168	134

What is the trend for $\mathrm{t}_{1 / 2}$ with respect to the increase in the initial partial pressures? Based on the trend, assign whether the reaction is either $0^{\text {th }}$ order or 1^{ST} order or 2^{ND} order and explain the reason behind your choice. Then using the appropriate $\mathrm{t}_{1 / 2}$ equation for the above assigned order, calculate the values of ' k ' at various partial pressures and confirm the above order of the reaction.
(b) For a first order reaction, the values of k, A and E_{a} are $1.155 \times 10^{-3} \mathrm{sec}^{-1}$, $4.0 \times 10^{13} \mathrm{sec}^{-1}$ and $98.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Calculate the value of temperature.
(c) Show that in the case of a first order reaction, the time taken for the completion of 99.9% of the reaction is approximately 10 times of the halflife of the reaction.

