

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY							
MODULE:	CEM2A20 / CEM 02A2 (Intermediate Physical Chemistry)						
CAMPUS	: АРК						
EXAM	Supplimentary Exam - 2019						
ATE: June 2019	TIME:						

DATE: June 2019	IIMC:
ASSESSOR:	Dr. S. Sitha
MODERATOR:	Prof. R. Meijboom
DURATION: 3 Hours	Total Marks: 100

NUMBER OF PAGES: 4 Pages (Including this page and a periodic table)

INSTRUCTIONS: Answer all the questions. Using of a non-graphing scientific calculator is allowed.

Important Equations & Physical Constants:

Trigonometric identities:		SIII 0 -	$\sin 2\theta = 2 \sin \theta \cdot \cos \theta$ $2 \sin \theta \cdot \sin \phi = \cos(\theta \cdot \phi) - \cos(\theta \cdot \phi)$		
Planck's Constant	h	6.626 x 10 ⁻³⁴ J•S,	6.626 x 10 ⁻³⁴ kg•m ² •S ⁻¹		
Universal Gas Constant	R	8.314 J• K^{-1} •mol ⁻¹ , 0.082 L•atm• K^{-1} •mo	1.986 cal• K^{-1} •mol ⁻¹ , I^{-1} ,		

Question 1:

Consider a system containing 63.998 grams of O_2 (an ideal gas). This system then undergoes an isothermal reversible expansion process at 25 °C. During this process the volume changed from 15.0 litres to 50.0 L. Calculate the change in internal energy, work-done, heat exchanged and change in entropy during the process.

Question 2:

Consider a system containing 20.0 L of gaseous N_2 (an ideal gas) is at 10 atm pressure and 25 °C of temperature. The system undergoes an adiabatic reversible expansion process until the pressure got reduced to 1 atm. Calculate the work-done.

Question 3:

In a thermal fuel cell, a combustion reaction of propane is happening at standard temperature condition. Calculate change in the standard Gibbs' free energy for the reaction using the data shown below.

 $\begin{array}{lll} \Delta_{f}G^{0} \mbox{ of } CO_{2}(g) = & -394.36 \mbox{ kJ.mol}^{-1} \\ \Delta_{f}G^{0} \mbox{ of } H_{2}O(l) = & -237.13 \mbox{ kJ.mol}^{-1} \\ \Delta_{f}G^{0} \mbox{ of } C_{3}H_{8}(g) = & -23.49 \mbox{ kJ.mol}^{-1} \end{array}$

Question 4:

When ammonia gas reacts with gaseous oxygen it produces gaseous nitric oxide and water vapor. If the change in internal energy for the reaction is 9080.0 J and the change in the entropy for the reaction is 35.7 JK⁻¹ at 27 °C, using Gibb's free energy equation, predict whether at 27 °C, the reaction is spontaneous or not.

Question 5:

Calculate the change in Gibb's Free energy for the following reaction and predict whether the reaction is spontaneous under standard conditions or not?

 $4 \text{ KClO}_{3 (s)} \rightarrow 3 \text{ KClO}_{4 (s)} + \text{ KCl}_{(s)}$

Given:

	ΔH_f^0 (kJ/mol)	S ⁰ (J/mol.K)
KClO _{3 (s)}	-397.7	143.1
KClO _{4 (s)}	-432.8	151.0
KCl (s)	-436.7	82.6

(6 marks)

(4 marks)

<u>(23 marks)</u>

(10 marks)

(7 marks)

Question 6:

A quantum mechanical particle is confined to move in one dimension between x = 0 and x = L.

- (a) Write the mathematical expression for the wave function of the above particle in its ground state.
- (b) Determine the value of the normalization constant, 'A' and write the final normalized wave function.
- (c) Using the normalized wave function as found in the part 2(a), find the probability that the particle will be found between x = 0 and x = L/3.

•	_
Question	7.
Question	1.

Show that the function e^{-3ikx} is eigenfunction of one dimensional kinetic energy operator. What is the eigen value?

Question 8:	(25 mark

(a) In a gaseous reaction, the time for half change $(t_{1/2})$ for various initial partial pressures (P) are recorded as follows:

P(mm of Hg)	500	600	800	1000
t _{1/2} (mins)	268	223	168	134

What is the trend for $t_{1/2}$ with respect to the increase in the initial partial pressures? Based on the trend, assign whether the reaction is either 0th order or 1ST order or 2ND order and explain the reason behind your choice. Then using the appropriate $t_{1/2}$ equation for the above assigned order, calculate the values of 'k' at various partial pressures and confirm the above order of the reaction.

- (b)For a first order reaction, the values of k, A and E_a are 1.155×10^{-3} sec⁻¹, 4.0×10^{13} sec⁻¹ and 98.6 kJ mol⁻¹, respectively. Calculate the value of temperature.
- (c) Show that in the case of a first order reaction, the time taken for the completion of 99.9% of the reaction is approximately 10 times of the halflife of the reaction.

(8 marks)

ks)

		, /								
84 18	Helium 2 He 4.003	Neon 10 O Ne 20.180	Argon 18 A Ar 39.948	Krypton 36 (Kr 83.80	Xenon 54 (Xe 131.293	Radon 86 💎 Rn (222)				
e e	74 17	Fluorine 9 (18.998	Chlorine 17 G 35.453	Bromine 35 b 79.904	lodine 53 1 126.904	Astatine 85 dt At (210)		,	Lutetium 71 U Lu 174.967	Lawrencium 103 (O) Lr (262)
	64 16	Oxygen 8 0 15.999	Sulfur 16 32.065	Selenium 34 🗍 Se 78.96	Tellurium 52 Te 127.60	Polonium 84 Po (209)		yet available.	Ytterbium 70 Yb 173.04	Nobelium L 102 O No (259)
	5A 15	Nitrogen 7 N 14.007	Phosphorus 15 P 30.974	Arsenic 33 a As 74.922	Antimony 51 Sb 121.760	Bismuth 83 Bi 208.980		* Names not officially assigned. Discovery of element 114 recently reported. Further information not yet available.	Thulium 69 Tm 168.934	Mendelevium 101 O Md (258)
	44 14	Garbon 6 2 12.011	Silicon 14 Si 28.086	Germanium 32 G Ge 1 72.64	Tin 50 S 51 S 118.710	Lead 82 Pb 207.2	Ununquadium * 114 () Uuq (289)	reported. Furthe	Erbium 68 Er 167.259	Fermium 100 O Fm (257)
	3A 13	Boron 5 B 10.811	Aluminum 13 🗍 Al 26.982	Gallium 31 Ga 69.723	Indium 49 In 114.818	Thallium 81 T 204.383		hent 114 recently	Holmium 67 Ho 164.930	Einsteinium 99 © Es (252)
Metal Metalloid	Nonmetal Recently discovered		2B 12	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.411	Mercury 80 A Hg 200.59	Ununbium * 112 Uub (285)	Discovery of elen	Dysprosium 66 Dy Dy 162.50	Californium 98 O Cf (251)
ž ž	S S		19	Copper 29 Cu 63.546	Silver 47 Ag 107.868	60ld 79 Au 196.967	Unununium * 111 © Uuu (272)	fficially assigned.	Terbium 65 Tb 158.925	Berkelium 97 © Bk (247)
			9	Nickel 28 Ni 58.693	Palladium 46 Pd 106.42	Platinum 78 Pt 195.078			Gadolinium 64 Gd 157.25	Curium 96 Cm (247)
Gas Liquid	Solid Synthetic		6	Cobalt 27 O Co 58.933	Rhodium 45 Rh 102.906	Iridium 77 🗍 Ir 192.217	Meitnerium 109 © Mt (268)	r that element.	Europium 63 🗍 Eu 151.964	Americium 95 © Am (243)
	\Box		88 88	Iron 26 Fe 55.845	Ruthenium 44 Ru 101.07	Osmium 76 Os 190.23	Hassium 108 © Hs (277)	t lived isotope fo	Samarium 62 O Sm 150.36	Plutonium 94 () Pu () (244)
- State of	matter		7B 7	Manganese 25 Mn 54.938	Technetium 43 O	Rhenium 75	Bohrium 107 O Bh (264)	The number in parentheses is the mass number of the longest lived isotope for that element.	Promethium 61 © Pm (145)	Neptunium 93 © Np (237)
ogen			6B 6	Chromium 24 G 51.996	Molybdenum 42 Mo 95.94	Tungsten 74 U W 183.84	Seaborgium 106 © 5g (266)	is the mass numl	Neodymium 60 🗍 144.24	Uranium 92 U U 238.029
Hydrogen 1	H 1.008		5 5	Vanadium 23 U 50.942	Niobium 41 Nb 92.906	Tantalum 73 Ta 180.948	Dubnium 105 O Db (262)	r in parentheses	Praseodymium 59 Pr 140.908	Protactinium 91 Da 231.036
Element – Atomic number –	Symbol – Atomic mass –		4B 4	Titanium 22 III 11 A	Zirconium 40 T 91.224	Hafnium 72 II Hf 178.49	Ruth	The numbe	Cerium 58 Ce 140.116	Thorium 90 Th 232.038
Atomic	Ator		38	Scandium 21 Sc 44.956	Yttrium 39 (1) 88.906	Lanthanum 57 La 138.906	Actinium 89 d Ac (227)		: series	e series
	24	Beryllium 4 Be 0 9.012	Magnesium 12 Mg 24.305	Calcium 20 Ca 40.078	Strontium 38 5r 87.62	Barium 56 Ba 137.327	Radium 88 Ra (226)		Lanthanide series	Actinide series
41 -	Hydrogen H 1.008	Lithium 3 Li 6.941	Sodium 11 Na 22.990	Potassium 19 K 39.098	Rubidium 37 C Rb 85.468	Cesium 55 G 132.905	Francium 87 Fr (223)			
	-	7	m	4	5	9	~			