FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY	
MODULE:	CEM2A20 / CEM 02A2 (Intermediate Physical Chemistry)
CAMPUS:	APK
EXAM	Final Exam - 2019

DATE: $\mathbf{2 7}^{\text {TH }}$ May 2019
ASSESSOR:
MODERATOR:
DURATION: 3 Hours

TIME: 8:30-11:30
Dr. S. Sitha
Prof. R. Meijboom
Total Marks: 100

NUMBER OF PAGES: 5 Pages (Including this page and a periodic table)
INSTRUCTIONS: Answer all the questions. Using of a non-graphing scientific calculator is allowed.

Important Equations \& Physical Constants:

Trigonometric identities:	$\operatorname{Sin}^{2} \theta=\frac{1-\cos 2 \theta}{2}$	$\sin 2 \theta=2 \sin \theta \cdot \cos \theta$ $2 \operatorname{Sin} \theta \cdot \operatorname{Sin} \phi=\operatorname{Cos}(\theta-\phi)-\operatorname{Cos}(\theta+\phi)$

Planck's Constant	h	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~S}$,	$6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~S}^{-1}$
Universal Gas Constant	R	$8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$,	$1.986 \mathrm{cal} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}$,
		$0.082 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$,	

Question 1:

An ideal gas is enclosed in a container with a movable piston. Initially it occupied a volume of V_{1} and after going through an isothermal reversible process at temperature of T, the final volume became $V_{2}\left(\right.$ where $\left.V_{2}>V_{1}\right)$.
(a)For such a process, derive the mathematical expression for the work done, starting from the equation, $\mathrm{dw}=-P_{\text {ext }}$. dV .
(b)For such a process, derive the mathematical expression for the change in entropy, starting from differential equation of entropy, $d S=\frac{d q_{r e v}}{T}$.
(c) In the above isothermal reversible expansion process happening at $25^{\circ} \mathrm{C}$, the final volume becomes 3 times the initial volume (system contains 10 moles of N_{2} as the ideal gas), calculate the work-done.
(d) In the above isothermal reversible expansion process happening at $25^{\circ} \mathrm{C}$, if the system was initially at 15 atm pressure and after the process is done the final pressure reduced to 5 atm (system contains 10 moles of N_{2} as the ideal gas), calculate the change in entropy.

Question 2:

(8 marks)
Consider the combustion reaction of propane. If the combustion of propane is happening at $25^{\circ} \mathrm{C}$, using the data shown below calculate the $\Delta S_{\mathrm{rxn}}^{\circ}$. If the system contains 220.5 grams of propane at $25^{\circ} \mathrm{C}$, calculate the quantity of heat generated during this combustion process.

$$
\begin{array}{ll}
S^{\circ} \text { of } \mathrm{CO}_{2}=213.7 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} & S^{\circ} \text { of } \mathrm{H}_{2} \mathrm{O}=69.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
S^{\circ} \text { of } \mathrm{C}_{3} \mathrm{H}_{8}=269.9 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} & S^{\circ} \text { of } \mathrm{O}_{2}=205.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
\end{array}
$$

Question 3:

(7 marks)
One of the key steps in the manufacturing of sulphuric acid is the formation of sulphur trioxide from the oxidation of sulphur dioxide. As this oxidation step is too slow at 298 K to be useful, so the reaction is usually carried out at high temperature. Calculate equilibrium constants, K for this oxidation process at 298 K and at $973 \mathrm{~K},\left(\Delta \mathrm{G}^{\circ}{ }_{298}=-141.6 \mathrm{~kJ} / \mathrm{mol}\right.$ and $\left.\Delta \mathrm{G}^{\circ}{ }_{973}=-12.12 \mathrm{~kJ} / \mathrm{mol}\right)$ to show the validity of the above observation.

Question 4:

According to first law of thermodynamics the enthalpy and internal energy of a system are related to each other through a mathematical equation. Write that equation for a system containing ' n ' mole of an ideal gas at temperature ' T '.

For the reaction: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})}$, occurring at $25^{\circ} \mathrm{C}$, if the $\Delta U=-35.5$ kJ , calculate the $\Delta \mathrm{H}$ of the reaction at the same temperature.

Question 5:

(a) Why is the work done equal to zero in free expansion?
(b) State the Zeroth Law of Thermodynamics.
(c) What happens to the entropy of a pure crystalline substance at absolute zero?
(d) Why is the change in entropy zero for an adiabatic expansion process?
(e) What is the value of change in free energy when the system is at equilibrium?

Question 6:

(a) Write the mathematical expression for the quantum mechanical operator for kinetic energy in three dimensional Cartesian space.
(b) Write the general mathematical expression for the condition of orthogonality.
(c) Write the conditions for a wave function to be considered as a well behaved wave function.
(d) Define what is meant by a commutator operator, using appropriate mathematical expression.
(e) Write the mathematical expression for the Hermitian condition.

Question 7:

 (10 marks)Write the complete general mathematical expression for the Eigen value equation and identify the term which represents the Eigen value.

Is the function $e^{-\frac{x^{2}}{2}}$ an eigen function for the following two operators?
(a) $\frac{d^{2}}{d x^{2}}-x^{2}$
(b) $\frac{1}{x} \frac{d}{d x}$

If so, calculate the eigen values in respective cases.

Question 8:

(a) If the reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ is zero order, write the rate law.
(b)How will the rate of a reaction change when $[\mathrm{A}]_{0}$ is doubled and tripled for:
(i) zero order reaction
(ii) second order reaction
(c) A reaction that is of first order with respect to reactant A has a rate constant $6 \mathrm{~min}^{-1}$. If we start with [A] $=5.0 \mathrm{~mol} \mathrm{~L}^{-1}$, when would [A] reach the value of $0.05 \mathrm{~mol} \mathrm{~L}^{-1}$?
(d) The specific rate constant for the combination of H_{2} and I_{2} to form HI is $2.34 \times 10^{-3} \mathrm{~mol} / \mathrm{lit} / \mathrm{sec}$ at 673 K , and $7.50 \times 10^{-2} \mathrm{~mol} / \mathrm{lit} / \mathrm{sec}$ at 773 K .
Calculate the activation energy for the reaction.
(e) The reaction: $2 \mathrm{~A}+\mathrm{B}+\mathrm{C} \rightarrow$ Product, is found to be first order with respect to A, second order with respect to B and zeroth order with respect to C .
(i) Write the rate law for above reaction.
(ii) What will happen to the rate of reaction when concentration of A, B and C are doubled.

