

FACULTY OF SCIENCE – DEPARTMENT OF CHEMICAL SCIENCES

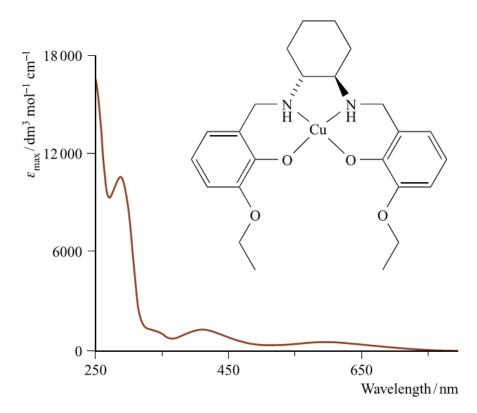
CEM01A2/CEM2A10 – JUNE EXAM 2019

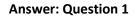
29 MAY 2019

INTERMEDIATE INORGANIC CHEMISTRY II

Examiners: Exam Total: Duration: Session:	Dr Charmaine Arderne 100 marks 3 hours 08h30 – 11h30	Moderator:	Prof Reinout Meijboom										
Instructions:	This paper consists of 16 pages including supplementary information Answer all the questions given below. All rough work to be done on the opposing open pages Calculators may be used but NO CELLPHONES are allowed Unless specified, show all working on how you obtained the final answers Structures must be drawn using proper stereochemical configurations. The paper consists of TEN questions worth 10 marks each.												
Student Number:													
ID / Passport	Number:												
Surname and	initials (optional):												
Contact telep	Contact telephone number:												

Marks:


Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10


Percentage:

QUESTION 1 Physical Techniques [10 marks]

Examine the UV-VIS spectrum given below for a 8.8×10^{-5} M Cu(II) complex in CH₂Cl₂. Solutions of the complex appear brown in colour and the intense bands seen arise from ligand-based $\pi \rightarrow \pi^*$ transitions. A 1 cm cuvette was used for the measurement.

- (a) Explain how the $\pi \rightarrow \pi^*$ transitions occur.
- (b) What part of the complex gives rise to these transitions (be specific)?
- (c) Which absorption peaks are associated with the observed colour of the complex?
- (d) Calculate the absorbance that corresponds to the peak at 292 nm.

Answer: Question 1 (continued...)

QUESTION 2 Atomic Structure [10 marks]

Draw pictures of the two *d* orbitals in the *xy*-plane as flat projections in the plane of the paper. Label each drawing with the appropriate mathematical function and include a labelled pair of Cartesian coordinates. Label the orbital lobes correctly with + and - signs.

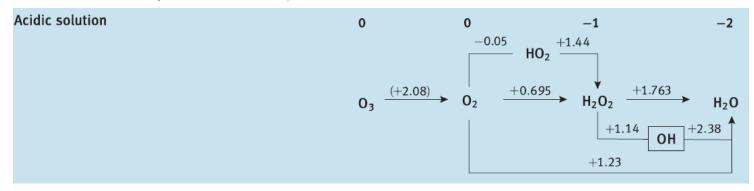
QUESTION 3 Molecular structure and Bonding [10 marks]

Draw the molecular orbital diagram for lithium fluoride. In doing so, calculate the orbital differences to help you decide which orbitals interact.

QUESTION 4 Structure of simple solids [10 marks]

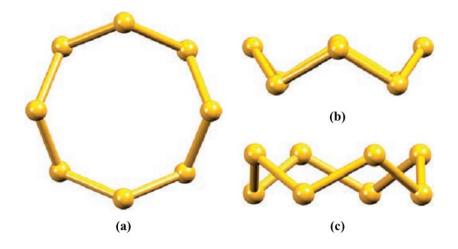
Calculate the radius of the largest sphere that can be placed in a tetrahedral hole (void) without pushing the spheres apart. (Draw a diagram to help you solve this problem)

QUESTION 5 Acids and Bases [10 marks]


- (a) Arrange the following species in order of increasing activity and explain your reasoning. $[Na(H_2O)_6]^+; \quad [Sc(H_2O)_6]^{3+}; \quad [Mn(H_2O)_6]^{2+}; \text{ and } [Ni(H_2O)_6]^{2+}$
- (b) Using Pauling's rules, predict the pK_a values for the following three species: H₃PO₄; H₂PO₄⁻; HPO₄²⁻

QUESTION 6 Oxidation and Reduction [10 marks]

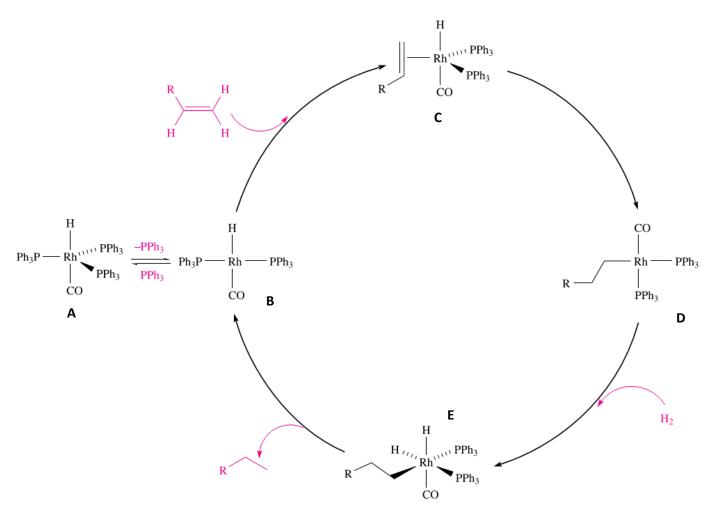
(a) Use the Latimer diagram below to calculate the value of E° for the ClO₂⁻ / Cl₂ couple in basic aqueous solution.



- (b) Explain the difference between disproportionation and comproportionation.
- (c) Examine the Latimer diagram for oxygen below. Determine if hydrogen peroxide will disproportionate in acid solution. If so, will the process be spontaneous? (Demonstrate your answer by a short calculation)

QUESTION 7 Molecular Symmetry [10 marks]

Three projections of the cyclic structure of S_8 are given below. All S–S bond distances are the same, as are the S–S–S bond angles. To what point group does S_8 belong?



QUESTION 8 Coordination Chemistry [10 marks]

- (a) Name the following complexes
 - (i) [Cr(NH₃)₆](CN)₃
 - (ii) [Pt(OH₂)₄][Zn(ox)₂]
- (b) Write the formulas for the following complexes:
 - (i) diaquadichloridopalladium(II)
 - (ii) diamminetetra(thiocyanato- κN)cobaltate(III)
- (c) Two types of isomerism are possible for the six-coordinate complex $Cr(NO_2)_2 \bullet 6 H_2O$. Identify all possible isomers and give one example for each isomer identified.

QUESTION 9 Catalysis [10 marks]

Examine the catalytic process below and answer the questions that follow:

- (a) Identify the catalyst in the process by placing a circle around the letter that identifies it.
- (b) Draw the full structure for the PPh₃ ligand.
- (c) Describe the geometry of the PPh_3 ligand and explain how it can bond to the Rh centre.
- (d) Does the Rh metal have a change in oxidation state during this reaction cycle?
- (e) Identify the point group of the Rh metal in species **E**.

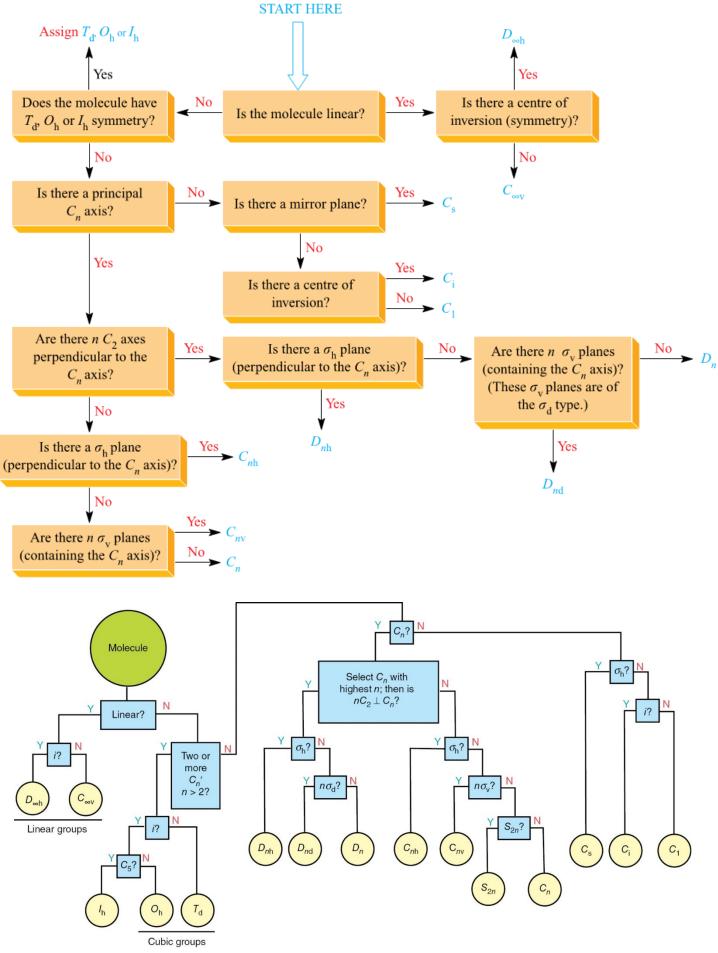
Answer: Question 9 (continued...)

QUESTION 10 First year concepts [10 marks]

- (a) The pH of 0.145 *M* acetic acid is 2.80. Calculate the K_a and the p K_a values for acetic acid.
- (b) Calculate the equilibrium concentration of H_3O^+ in a 0.10 *M* solution of butanoic acid ($K_a = 1.86 \times 10^{-5}$). From this calculate the pH of this solution.

Supplementary Information – Page 1

TABLE 5.2 Orbital Potential Energies


		Orbital Potential Energy (eV)												
Atomic Number	Element	1s	2 s	2p	3s	3р	4 s	4 p						
1	Н	-13.61												
2	He	-24.59												
3	Li		-5.39											
4	Be		-9.32											
5	В		-14.05	-8.30										
6	С		-19.43	-10.66										
7	Ν		-25.56	-13.18										
8	0		-32.38	-15.85										
9	F		-40.17	-18.65										
10	Ne		-48.47	-21.59										
11	Na				-5.14									
12	Mg				-7.65									
13	Al				-11.32	-5.98								
14	Si				-15.89	-7.78								
15	Р				-18.84	-9.65								
16	S				-22.71	-11.62								
17	Cl				-25.23	-13.67								
18	Ar				-29.24	-15.82								
19	K						-4.34							
20	Ca						-6.11							
30	Zn						-9.39							
31	Ga						-12.61	-5.93						
32	Ge						-16.05	-7.54						
33	As						-18.94	-9.17						
34	Se						-21.37	-10.82						
35	Br						-24.37	-12.49						
36	Kr						-27.51	-14.22						

J. B. Mann, T. L. Meek, L. C. Allen, J. Am. Chem. Soc., 2000, 122, 2780.

All energies are negative, representing average attractive potentials between the electrons and the nucleus for all terms of the specified orbitals.

Additional orbital potential energy values are available in the online Appendix B-9.

Supplementary Information – Page 2

		-																		_					7	_	
≡				_		5	•		0			8			0	1				11	Е	175.0	103	Lr 201			
18/VIII 2	He 4.003	°°2	20.1	18	Ł	39.9	36	z	83.8	54	×	131.	86	å	222.0					0	'n	3.0	02	No 259.1			
	17/VII	பை	19.00	17	ວ	35.45	35	ъ	79.90	53	_	126.9	85	¥	210.0							-	_		-		
	16/VI			+		-						-		-	2.7.4					-		-		256.1	-		
						-	-		-			-			-					68	ш	167.3	100	Fm 257.1			
	15/V			+		-	-		-	-	-	-			-					67	РЧ	64.9	66	ES 252.1			
	14/IV	ہ ر	12.01	14	ŝ	28.09	32	Ge	72.61	50	Sn	118.7	82	4 P	207.2							-		Cf	-		
	13/111	۵ C	10.81	13	Ā	26.98	31	Ga	59.72	49	<u>_</u>	114.8	81	F	204.4				p block			-			-		
						-			-	-	р	-		_	-				4	65	д	158.	61	BK 247.1			
							-		-	1.1	-	-	<u> </u>		-					64	рд	157.2	96	Cm 247.1			
						11	29	ರ	63.5	47	Ag	107.	79	¥	197.					63	ü	52.0	95	Am 243.1			
						10	28	Ī	58.69	46	Р	106.4	78	£	195.1							-+			-		
		1				6	27	പ്പ	8.93	45	뚭	02.9	77	-	92.2	109	Jne					-+		Pu 239.1	-		
-	1.008						-			2.6.			1		1	1.14	C III I	1221		61	Pm	144.9	93	737.0			
							5		-				-		-	108				60	PN	144.2	92	U 238.0			
						-	25	ž	54.94	43	ř	98.9	75	Be	186.2	107	ů N					-+		231.0	-		
						9	24	ບັ	52.00	42	ŝ	95.94	74	>	183.8	106	hh					-+					
						- 1			-			1.1			-		Unp			58	ပီ	140.	6 j	732	į		
						- H			-			-	-		-					57	La	138.9	68 .	AC 227.0		f block	
						4			-			-	72	Ì	178	10	Dng		×		des	_		\geq	4		1
						e	21	Sc	44.96	39	>	88.91	-0		2	Δ <u>-</u> -	۲		d block	/	Lanthanides			Actinides			
	2	₽ Be	9.012	12	Mg	24.30	20	Ca	10.08	38	s	37.62	56	Ba	37.3	88	Ra 226.0				Lar			Ac			
	-	3		-		-			-			-			-	-	Fr 23.0 2		s block					•			
	3	-			2	22		4	39		2	85		0 。	13		7 F		st								10
									0	lə				-													

The Periodic Table

Period

Supplementary Information – Page 3