

APPLIED MATHEMATICS

Quantum Computing APM8X16

Supplementary Examination: June/2019

Duration: 120 minutes

Assessor: Dr. G.J. Kemp Moderator: Prof. Y. Hardy		
Surname:	Student Number:	

Marks: 50

(6)

Question 1 (15 marks)

Consider a qubit state preparation that has produced the ensemble $\{p_i, |\psi_i\rangle\}$, where each $|\psi_i\rangle$ is a pure state and p_i is the corresponding probability.

(a) Show that for each pure state
$$|\psi_i\rangle$$
, (6)

$$|\psi_i\rangle\langle\psi_i| = \frac{1}{2}\left(I + \boldsymbol{r}_i\cdot\boldsymbol{\sigma}\right),$$

where r_i is a three-dimensional unit vector indicating the position of the state on the Bloch sphere.

(b) For an arbitrary mixed state, show that the density matrix can be written as (5)

$$\rho = \frac{1}{2} \left(I + \boldsymbol{r} \cdot \boldsymbol{\sigma} \right),$$

where $|\boldsymbol{r}| < 1$.

- (c) Where would the completely mixed state $\rho = I/2$ be located on (or inside) the Bloch sphere?
- (d) Where would the pure state $|+\rangle$ and $|-\rangle$ be located on the Bloch sphere? (2)

Question 2 (12 marks)

This question discusses the idea of ensemble ambiguity.

(a) Consider two ensembles $\{p_i, |\psi_i\rangle\}$ and $\{q_i, |\phi_i\rangle\}$. If the two sets of states are related to each other by

$$\sqrt{p_i} |\psi_i\rangle = \sum_j u_{ij} \sqrt{q_j} |\phi_j\rangle,$$

where u_{ij} is a unitary matrix, show that both ensembles give the same density matrix.

(b) Study the following density matrix

$$\rho = \left(\begin{array}{cc} 1/2 & 1/4 \\ 1/4 & 1/2 \end{array}\right).$$

Solving the eigenvalue problem for ρ one may conclude that the system described by ρ has the ensemble

$$\rho = \frac{3}{4} |+\rangle\langle +| + \frac{1}{4} |-\rangle\langle -|.$$

Find one other ensemble that gives the same density matrix ρ .

Question 3 (14 marks)

The following circuit implements the quantum teleportation algorithm.



(5)

The top two registers belong to Alice and the bottom one belongs to Bob. Alice and Bob share the entangled state $|\Phi_1\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. Alice wants to transit the qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ to Bob using the above circuit.

- (a) Calculate the overall state just before Alice performs the measurements M_1 and M_2 .
- (b) What is the density matrix for the system after Alice has performed the measurements M_1 and M_2 ? (4)
- (c) Say the outcomes for measurements are $M_1 = 1$ and $M_2 = 0$. Alice must now send these classical bits of information to Bob so that he may recover the original state $|\psi\rangle$. What transformations must Bob do to his qubit to recover $|\psi\rangle$ (also state the correct order that the transformations need to be applied in)?

Question 4 (9 marks)

Find the Schmidt decomposition for the states

(a)
$$\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

(b)
$$\frac{\sqrt{3}}{2\sqrt{2}}|00\rangle + \frac{1}{2\sqrt{2}}|01\rangle + \frac{\sqrt{3}}{2\sqrt{2}}|10\rangle - \frac{1}{2\sqrt{2}}|11\rangle$$

(c) Find the Schmidt coefficients for the following state

$$\frac{|00\rangle + |01\rangle + |11\rangle}{\sqrt{3}}$$

Useful information

• The Pauli matrices are defined as:

$$X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

 \bullet The Hadamard transform H is

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

• We also define

$$|\pm\rangle = \frac{1}{\sqrt{2}} (|0\rangle \pm |1\rangle)$$

• The Schmidt decomposition for a pure state $|\psi\rangle$ of a composite system AB is

$$|\psi\rangle = \sum_{i} \lambda_{i} |i_{A}\rangle |i_{B}\rangle ,$$

where the λ_i are the Schmidt coefficients and the $|i_{A/B}\rangle$ are orthonormal states for systems A and B respectively.