APPLIED MATHEMATICS

Quantum Computing
 APM8X16

Examination: 22/05/2019

Duration: 120 minutes
Marks: 50
Assessor: Dr. G.J. Kemp
Moderator: Prof. Y. Hardy

Surname: \qquad
\qquad

Question 1 (15 marks)
Consider a qubit state preparation that has produced the ensemble $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$, where each $\left|\psi_{i}\right\rangle$ is a pure state and p_{i} is the corresponding probability.
(a) Show that for each pure state $\left|\psi_{i}\right\rangle$,

$$
\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|=\frac{1}{2}\left(I+\boldsymbol{r}_{i} \cdot \boldsymbol{\sigma}\right),
$$

where \boldsymbol{r}_{i} is a three-dimensional unit vector indicating the position of the state on the Bloch sphere.
(b) For an arbitrary mixed state, show that the density matrix can be written as

$$
\rho=\frac{1}{2}(I+\boldsymbol{r} \cdot \boldsymbol{\sigma}),
$$

where $|\boldsymbol{r}|<1$.
(c) Where would the completely mixed state $\rho=I / 2$ be located on (or inside) the Bloch sphere?
(d) Where would the pure states $|0\rangle$ and $|1\rangle$ be located on the Bloch sphere?

Question 2 (12 marks)
This question discusses the idea of ensemble ambiguity.
(a) Consider two ensembles $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$ and $\left\{q_{i},\left|\phi_{i}\right\rangle\right\}$. If the two sets of states are related to each other by

$$
\sqrt{p_{i}}\left|\psi_{i}\right\rangle=\sum_{j} u_{i j} \sqrt{q_{j}}\left|\phi_{j}\right\rangle,
$$

where $u_{i j}$ is a unitary matrix, show that both ensembles give the same density matrix.
(b) Study the following density matrix

$$
\rho=\left(\begin{array}{cc}
1 / 2 & -1 / 6 \\
-1 / 6 & 1 / 2
\end{array}\right) .
$$

Solving the eigenvalue problem for ρ one may conclude that the system described by ρ has the ensemble

$$
\rho=\frac{2}{3}|+\rangle\langle+|+\frac{1}{3}|-\rangle\langle-| .
$$

Find one other ensemble that gives the same density matrix ρ.
Question 3 (14 marks)
The following circuit implements the quantum teleportation algorithm.

The top two registers belong to Alice and the bottom one belongs to Bob. Alice and Bob share the entangled state $\left|\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. Alice wants to transit the qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ to Bob using the above circuit.
(a) Calculate the overall state just before Alice performs the measurements M_{1} and M_{2}.
(b) What is the density matrix for the system after Alice has performed the measurements M_{1} and M_{2} ?
(c) What is the density matrix for Bob's system alone?

Question 4 (9 marks)
Find the Schmidt decomposition for the states
(a)

$$
\frac{|00\rangle+|01\rangle+|10\rangle+|11\rangle}{2}
$$

(b)

$$
\begin{equation*}
\frac{|00\rangle+|01\rangle+|10\rangle-|11\rangle}{2} \tag{2}
\end{equation*}
$$

(c) Find the Schmidt coefficients for the following state

$$
\frac{|00\rangle+|01\rangle+|10\rangle}{\sqrt{3}}
$$

Useful information

- The Pauli matrices are defined as:

$$
X=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad Z=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

- We also define
- The Hadamard transform H is

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- The Schmidt decomposition for a pure state $|\psi\rangle$ of a composite system $A B$ is

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|i_{A}\right\rangle\left|i_{B}\right\rangle,
$$

where the λ_{i} are the Schmidt coefficients and the $\left|i_{A / B}\right\rangle$ are orthonormal states for systems A and B respectively.

