Department of Pure and Applied Mathematics Differential Equations A (APM8X10) - Exam

28 May, 2019

Examiner: Prof. Fabio Cinti

Duration: 3h
Total marks: 60
This is a closed-book examination
Note: numbers in brackets [] indicate the marks that are awarded for each of the four questions if correctly solved.

1. Consider the initial-value problem

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2}, \quad y(1)=4, \quad y^{\prime}(1)=3 .
$$

Solve the equation using the Green's functions formalism.
2. Use the power series method to solve the given initial-value problem

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}+8 y=0, \quad y(0)=3, \quad y^{\prime}(0)=0 . \tag{15}
\end{equation*}
$$

3. Consider the non-homogenous linea system

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=x_{1}(t)+x_{2}(t)+e^{t} \\
\frac{d x_{2}(t)}{d t}=x_{1}(t)+x_{2}(t)+e^{2 t} \\
\frac{d x_{3}(t)}{d t}=x_{3}(t)+t e^{3 t} .
\end{array}\right.
$$

Solve the given system using the variation of parameters method.
4. Consider the autonomous system

$$
\left\{\begin{aligned}
x^{\prime} & =x\left(1-x^{2}-3 y^{2}\right) \\
y^{\prime} & =y\left(3-x^{2}-3 y^{2}\right)
\end{aligned}\right.
$$

Finds all critical points.

