

COLLEGE OF BUSINESS AND ECONOMICS

DEPARTMENT OF APPLIED INFORMATION SYSTEMS

JUNE 2019 SUPPLEMENTARY EXAMINATION

MODULE: Advanced Programming 1A

CODE: APM11A1 (Supplementary)

DATE: June 2019

DURATION: 3 Hours

TIME: TBA

TOTAL MARKS: 172 (Weight: 50% of Final Mark)

EXAMINER(S): Dr Abejide Ade-Ibijola (Jide / x1213)

MODERATOR(S): Dr Gideon Nimako (WITS)

NUMBER OF PAGES: 10

INSTRUCTIONS:

• This is a CLOSED book examination.

• There are 172 marks available. 172 marks = 50%.

• You may write your programs in any of the 4 prescribed programming languages. You may not
mix languages within the same program.

• Keep your writing short. Do not write code where algorithm is required; and vice-versa.

• There are five sections in this paper. You are advised to spend an average of 30 minutes on each
section. This will leave you with an extra 30 minutes to check your work.

• Electronic devices, and digital watches are NOT allowed.

• You are given one question paper and one answer booklet. You must write your student number
on the answer booklet and hand it in.

• Write neatly and legibly.

• For all multiple-choice questions, indicate your answer clearly. Your answer must be a unique
option. If two or more answers are indicated where only one is required, you will be marked wrong
for that question. Note that some multiple-choice questions allow two or more options to be
selected.

• The general University of Johannesburg policies, procedures and rules pertaining to written
assessments apply to this examination.

Advanced Programming (Supplementary Examination) 2019

Section A: Starter (47 marks)

1. It is possible for an algorithm to belong to one or more classification or group of algorithms.

(a) True

(b) False

(c) Depends on the programming language

(d) Depends on the paradigm

(e) ONLY in object-oriented programming lan-

guages

2 mark(s)

2. List any four programming paradigms.

2 mark(s)

3. In comparing programming languages, list two topics that are worth studying.

2 mark(s)

4. What supports are built in programming languages for abstraction?

2 mark(s)

5. List four domains where efficient implementation of a programming language may find applications.

2 mark(s)

6. A formal language for describing computation?

2 mark(s)

7. Programming languages differ mainly by common and uncommon constructs. List two common and

two uncommon constructs.

2 mark(s)

8. State one attribute of a second generation programming language.

2 mark(s)

9. A programming language with features that are built upon a small, mutually independent set of

primitive operations is referred to as?

2 mark(s)

Page 1 of 10

Advanced Programming (Supplementary Examination) 2019

10. List three trends in research and development for programming languages.

3 mark(s)

11. In class diagram, list three types of method visibility, and three types of relationships.

3 mark(s)

12. List any two structural, and two behavioural types of UML diagram.

4 mark(s)

13. Using terms such as: algorithm, data, functions, facts, rules, objects, and messages; arithmetically

describe the following styles of programming:

(a) Imperative

(b) Functional

(c) Logic

(d) Object-orientation

4 mark(s)

14. Give two examples of a visual programming language.

2 mark(s)

15. Which of the following variable name(s) is/are invalid?

(a) abs

(b) sum of n

(c) aveRAge

(d) while

(e) log

(f) password1

3 mark(s)

16. List four reasons for using recursion.

2 mark(s)

17. Computing the Fibonacci sequence using a recursive function is not efficient. Why is this so?

2 mark(s)

18. If method A calls method B, method B calls method C, and method C calls method A. How do we

refer to methods A, B, C?

2 mark(s)

19. As a property of a good algorithm design, inputs and outputs must be?

2 mark(s)

20. List the four programming languages allowed in this module.

2 mark(s)

Page 2 of 10

Advanced Programming (Supplementary Examination) 2019

Section B: Algorithms and Advanced Data Structures (45 marks)

1. Write an algorithm to sum two numbers together.

3 mark(s)

2. Write an algorithm that computes the sum of n integer numbers.

7 mark(s)

3. Write an algorithm to read in three fractions of the form:

a
b

and calculate the sum of these fractions.

5 mark(s)

4. Write an algorithm that determines if a number entered by a user is prime or not.

10 mark(s)

5. With the aid of an algorithm, describe the dequeue operation of a Queue object.

5 mark(s)

Examine the graph G = {V,E} in Figure 1, and answer the questions that follo

Figure 1: A directed graph, G = {V,E}

Page 3 of 10

Advanced Programming (Supplementary Examination) 2019

6. Determine NG(B), NG(C), N−G(A), N+
G(B), and N−G(C).

10 mark(s)

7. What are the elements of the sets V and E?

3 mark(s)

8. Is this graph strongly connected?

2 mark(s)

Page 4 of 10

Advanced Programming (Supplementary Examination) 2019

Section C: Probabilistic Algorithms and Simulations (40 marks)

1. Write a program to generate 600 random PINs of 16 digits each.

10 mark(s)

2. Write a program to display the configurations in Appendix I, using nested loops.

10 mark(s)

3. Bongi is observing cars on the highway in Johannesburg. The probability that the colour of a passing

car is red is given as 0.88. Write a program that determines the colour of 400 cars on any given day.

10 mark(s)

4. Write a recursive function GetStringAB(int x) that returns a string containing x− 1 hyphenated

A’s and a single ‘B’ at the tail end. For example, if x is 4, the string to be displayed is “A−A−A−B”.

If x = 7, “A−A−A−A−A−A−B” should be returned.

10 mark(s)

Page 5 of 10

Advanced Programming (Supplementary Examination) 2019

Section D: Formal Languages, Automata, and Compilers (25 marks)

1. For each of the following regular expressions, defined over the indicated alphabet, determine (from

options A to E) which string is accepted by the expression.

10 mark(s)

(D1.1). Rex = e∗j+; Σ = {x, h, e, j}.

A. jjjj

B. eeeeejjjjjj

C. xxhhhhhhhhhhjjjj

D. xxxxxxxxxxee

E. xxjjjjjjj

(D1.2). Rex = q∗f+; Σ = {l, u, q, f}.

A. luuuuuuuuuqqqqffffffff

B. uuuuuuuuuu

C. llllllllll

D. qqqqqffffffff

E. llllllllffff

(D1.3). Rex = p∗a?; Σ = {r, w, p, a}.

A. rrrrrwwwwwppppppaaaaaaaa

B. rrrrrrrrrwwwwwwwwwwaaaaaaa

C. pppppppp

D. rrrrrrr

E. wwwwwwwwwwpppppppppp

(D1.4). Rex = r∗m∗; Σ = {b, d, r,m}.

A. ddd

B. bbbbbbbbbrrrrrrrr

C. bdddddddddrrrmmmmm

D. dddrrrrrrrmmmmmm

E. rr

(D1.5). Rex = r+qx+; Σ = {m, a, d, r, q, x}.

A. maaaaaqqqxxxxxxxxx

B. mmmmmaaaaaaaddddddqqqqqxxxxxxxx

C. rrrqxxxxx

D. mmmadddddddd

E. mmmmmmmmmaaaaaaaaaqqqqqxxxxx

(D1.6). Rex = k+e+; Σ = {y, q, k, e}.

A. kkkkkkkk

B. eeeeeeeee

C. kkkkkkkkkkeeeeeeeeee

D. kkkkeeeeeeee

E. yyyyyyqqqqqq

(D1.7). Rex = bd+; Σ = {h, e, b, d}.

A. hhhhhhhhbbbbbbdddddddd

B. hhhhhhhhhheeeeebbbbbbbbbbdddd

C. eeeeeeeeeebbbbbbbddddd

D. eeeeeeeeebdddd

E. bdd

(D1.8). Rex = q?t+; Σ = {r, i, q, t}.

A. q

B. iiiiiiiiqqqqttttttt

C. rrrrrrriiiii

D. rrrrrrriiiiqqqqqqqt

E. ttttttt

(D1.9). Rex = k+tz∗; Σ = {d, x, f, k, t, z}.

A. ddddddddddxxxxxzzz

B. dddddddfftttttttzzzz

C. kkktzzzzzz

D. dddxxxxffffffffkkkkkkkkkktttz

E. xxxxxfffffffffkk

(D1.10). Rex = r+w+; Σ = {k, x, r, w}.

A. xx

B. kkkkkkkkx

C. kkxxrrrrrrrrrrwwwwwwwww

D. rwwwwww

E. kkkkkkxxxxxxxxxxrrwwwwwwwww

Page 6 of 10

Advanced Programming (Supplementary Examination) 2019

Figure 2: The Tennis Automaton

2. In the Tennis Automaton shown in Figure 2, is the string (so)4o2s2 accepted? If yes, list the states

that lead to the accepting state. If no, state why?

4 mark(s)

3. The language of the set of strings of 0’s and 1’a with no consecutive one’s, produces a set whose length

of strings are similar to a particular mathematical sequence? What is this sequence?

2 mark(s)

4. In program compilation or translation, a parse tree or IR (Intermediate Representation) can be passed

to at least four different components for further processing. What are these components.

4 mark(s)

5. What is Lazy Evaluation?

2 mark(s)

6. What stage of compilation deals with the checking of the source code against the grammar of the

programming language?

3 mark(s)

Page 7 of 10

Advanced Programming (Supplementary Examination) 2019

Section E: Natural Language Processing (15 marks)

Recall the Email Extractor Application developed during this module. The screenshot of this application is

shown in Figure 3.

Figure 3: Email Extractor Application

The following are code snippets from this Application. Study them, and answer the following questions

about the source code of this application.

Listing 1: Execute Button

1 Private Sub btnExecute_Click(sender As Object , e As EventArgs) Handles btnExecute.Click

2 Dim aText As String = txtRawText.Text.ToString.Replace(” ,”, ” ”)

3 Dim arr As New ArrayList

4 arr.AddRange(aText.Split(” ”))

5 For Each itm As String In arr

6 If isEmail(itm.ToString.Trim) Then

7 ListResult.Items.Add(itm)

8 End If

9 Next

10 Label1.Text = ListResult.Items.Count.ToString () & ” Emails found ! ”

11 End Sub �
Listing 2: IsEmail Method

1 Private Function isEmail(aStr As String) As Boolean

2 Dim result As Boolean = False

3 Dim text_or_digit = ” [A−Za−z0−9]+”

4 Dim email_re As String = ”ˆ” & text_or_digit & ”(\@)” & text_or_digit & ” (\ .) ” & text_or_digit & ”$”

5 Dim email_re2 As String = ”ˆ” & text_or_digit & ”(\@)” & text_or_digit & ” (\ .) ” & text_or_digit & ”

(\ .) ” & text_or_digit & ”$”

6 If StringPatternRecognition.doesRegexRecogniseValue(email_re , aStr) Then

7 result = True

8 ElseIf StringPatternRecognition.doesRegexRecogniseValue(email_re2 , aStr) Then

9 result = True

10 End If

11 Return result

12 End Function �
Page 8 of 10

Advanced Programming (Supplementary Examination) 2019

1. The code fragment in Listing 1 runs when the EXECUTE button is clicked. What is the function of

Line 2 in Listing 1?

(a) To offer some form of normalisation of text before processing

(b) To do syntax analysis on the raw text

(c) To normalise the regular expression

(d) To add emails to the ListBox

(e) It compares a regular expression to a string

4 mark(s)

2. What is arr in the code in Listing 1?

(a) A variable that stores all tokenised words from the raw text

(b) A variable that stores all recognised emails in the raw text

(c) An arraylist of integers

(d) An arraylist of splited emails

(e) A class for recognising strings

4 mark(s)

3. Modify the code in Listing 2 to allow ONLY emails addresses that end with “.up.org.za”.

7 mark(s)

Page 9 of 10

Advanced Programming (Supplementary Examination) 2019

Appendix A

2-1-1

2-1-2

2-3-1

2-3-2

2-5-1

2-5-2

2-7-1

2-7-2

4-1-1

4-1-2

4-3-1

4-3-2

4-5-1

4-5-2

4-7-1

4-7-2

6-1-1

6-1-2

6-3-1

6-3-2

6-5-1

6-5-2

6-7-1

6-7-2

Page 10 of 10

