Faculty of Science

Principles of Biochemistry BIC1B01/BIC01B1 SSA Examination

DATE

SESSION 08h30 - 11h30

EKSAMINAR

Dr. G. Koorsen

MODERATOR

Dr I. Mwaba

TIME

3 HOURS

MARKS

80

Please read the following instructions carefully:

- Answer all the questions in the examination book provided.
- The use of calculator is allowed.

Question 1 (8)

Consider the following Table and answer the questions that follow:

Acid	HA	A	Ka
Pyruvic acid	CH3COCOOH	CH ₈ C—COO*	3.16×10^{-3}
Formic acid	HCOOH	HCOO"	1.78×10^{-4}
Lacticacid	СН₅СНОНСООН	CH ₃ CH—HCOO ⁺	-1.38×10^{-4}
Benzoic acid	C_0H_aCOOH	C ₆ H ₅ COO ⁵	6.46×10^{-5}
Acetic acid	CH ₈ COOH	CH ₃ COO-	1.76×10^{-5}
Ammonium ion	NH_4^{-4}	NH _s	5.6×10^{-10}
Oxalic acid (1)	HOOC—COOH	HOOC—COO?	5.9×10^{-2}
Oxalic acid (2)	HOOC—COO-	"OOC-COO"	6.4×10^{-5}
Malonic acid (1)	HOOC—CH ₂ —COOH	HOOC—CH ₂ —COO ⁺	1.49×10^{-3}
Malonic acid (2)	HOOC-CH ₂ COO	"OOCCH,COO"	2.03×102^{-6}
Malie acid (1)	HOOCCH _y CHOHCOOH	HOOCCH ₂ CHOHCOO-	$3.98\times10^{+4}$
Malic acid (2)	HOOC—CH ₂ —CHOH—COO	"OOC—CH,—CHOH—COO"	5.5×10^{-6}
Succinic acid (1)	HOOC—CH ₉ —CH ₄ O—OOH	HOOC—CH ₂ —CH ₂ —COO ⁻	6.17×10^{-5}
Succinic acid (2)	HOOC-CH _g -CH _g -COO	700C—CH ₂ —CH ₂ —COO7	2.3×10^{-6}
Carbonic acid (1)	H_0CO_3	HCO ₃ =	4.3×10^{-7}
Carbonic acid (2)	HCO ₃ -	$C(O_n^{n-1})$	5.6×10^{-11}
Citric acid (1)	HOOC—CH ₂ —C(OH) (COOH) OCH ₂ —COOH	HOOC—CH ₂ —C(OH) (COOH) —CH ₃ —COO ⁺	8.14×10^{-4}
Citric acid (2)	HOOC—CH ₂ —C(OH) (COOH) OCH ₂ —COO	"OOC—CH ₂ —C(OH) (COOH) —CH ₂ —COO"	1.78 × 10~5
Citric acid (3)	TOOC—CH ₂ —C(OH) (COOH) OCH ₂ —COOT	CH2—COO+	3.9 × 10 ⁻⁶
Phosphoric acid (1)	$\mathrm{H_{3}PO_{4}}$	H ₂ PO~ ₄	7.25×10^{-8}
Phosphoric acid (2)	H ₂ PO ₄ =	HPO ₄ 2-	6.31×10^{-8}
Phosphoric acid (3)	HPO ₄ 2-	PO_1^{3-}	3.98×10^{-18}

- 1.1. In a solution of formic acid, what would be the ration of HCOOH: HCOO at pH 6? (4)
- 1.2. Draw a titration curve for the titration of acetic acid with NaOH. Label the axes clearly and indicate the value of the pKa of acetic acid on the graph. (4)

Question 2 (6)

Draw the structure of the amino acid histidine and label all the functional groups. (6)

Question 3 (12)

- 3.1. Answer the following question regarding the disease phenylketonuria (PKU):
- 3.1.1. What enzyme is deficient in PKU? (1)
- 3.1.2. What amino acid accumulates in the cells of PKU individuals? (1)
- 3.1.3. What metabolite accumulates in the cells of PKU individuals? (1)
- 3.1.4. What is the effect of this accumulation on the health of PKU individuals? (1)
- 3.2.1. Give the dissociation reaction for the amino acid histidine. (6) $pKa(\alpha-COOH) = 1,82$; $pKa(\alpha-NH_3^+) = 9.17$; pKa(R) = 6.04
- 3.2.2. What is the pl of histidine? (2)

Question 4 (6)

What are the two different types of beta sheets that can be formed by proteins? What are the differences between them? (6)

Question 5 (11)

- 5.1. Describe the difference in composition between the three forms of haemoglobin. (9)
- 5.2. The following diagram shows the binding curves of two oxygen binding proteins. Consider the curves carefully and answer the question that follow:

5.2.1. What do the x- and y-axes of the graph represent? (2)

Question 6 (18)

- 6.1. What is the difference between a nucleoside and a nucleotide? (2)
- 6.2. Give the complementary DNA strand to the following reference strand: (2) 5'-ATGTGTC-3'
- 6.3. Draw the structures of the following nucleotides:
- 6.3.1. deoxyadenosine-5'-phophate (3)
- 6.3.2. deoxycytidine-5'-phosphate (3)
- 6.4. Compare A-DNA and B-DNA with respect to:
- 6.4.1. The handedness of the helix (left-handed or right-handed) (2)
- 6.4.2. The number of base pairs per turn of the helix (2)
- 6.4.3. The angle between the base-pairs and the helix axis (2)

6.5. What is the difference between a Class I and a Class II topoisomerase? (2)

Question 7 (4)

7.1. Draw the general ring structure of a steroid and number all the rings and carbon atoms. (3)

7.2. Identify the following lipid: (1)

$$HOCH_{2} \xrightarrow{H-C-N-CR} OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

$$OH$$

Question 8 (6)

8.1. Draw the structures of the following monosaccharides:

8.1.1. α-D-glucopyranose (3)

8.1.2. α -D-fructofuranose (3)

Question 9 (9)

- 9.1. Compare amylose and amylopectin with respect to their:
- 9.1.1. Composition (3)
- 9.1.2. Structure (2)
- 9.1.3. Degradation (4)

TOTAL [80]