Faculty of Science # Principles of Biochemistry BIC1B01/BIC01B1 Examination DATE **12 NOVEMBER 2018** **SESSION** 08h30 - 11h30 **EKSAMINAR** Dr. G. Koorsen **MODERATOR** Dr I. Mwaba TIME 3 HOURS MARKS 80 Please read the following instructions carefully: - Answer all the questions in the examination book provided. - The use of a calculator is allowed. Question 1 (9) Consider the following Table and answer the questions that follow: | Acid | HA | A | Ka | |---------------------|--|--|--------------------------| | Pyruvic acid | CH₃COCOOH | CH ₃ C—COO° | 3.16×10^{-3} | | Formic acid | HCOOH | HCOO- | 1.78×10^{-4} | | Lactic acid | СП₃СНОНСООН | CH ₈ CH—HCOO ⁻ | 1.38×10^{-4} | | Benzoic acid | G_6H_5COOH | G ₆ H ₅ COO~ | 6.46×10^{-5} | | Acetic acid | CH ₃ COOH | CH*COO- | 1.76×10^{-6} | | Ammonium ion | ZH44 | NH_3 | 5.6×10^{-10} | | Oxalic acid (1) | ноос-соон | HOOC-COO° | 5.9×10^{-2} | | Oxalic acid (2) | HOOC-COO | ~()()()~ | 6.4×10^{-5} | | Mafonic acid (1) | HOOC—CH ₀ —COOH | HOOC-CH ₂ -COO | 1.49×10^{-3} | | Malonic acid (2) | HOOCCH ₂ COO | °OOCCH ₉ COO° | 2.03×102^{-6} | | Malic acid (1) | HOOCCH ₂ CHOHCOOH | HOOC-CH,-CHOH-GOOT | 3.98×10^{-4} | | Malic acid (2) | HOOC—CH ₂ —CHOH—COO" | "OOC—CH ₂ —CHOH—COO" | 5.5×10^{-6} | | Succinic acid (1) | HOOC-CH,-CH,O-OOH | HOOCCH ₃ CH ₃ COO ⁻ | 6.17×10^{-5} | | Succinic acid (2) | HOOCCH ₂ COO" | TOOC—CH ₂ —CH ₂ —COOT | 2.3×10^{-6} | | Carbonic acid (1) | H_0CO_8 | HGO _s = | 4.3×10^{-7} | | Carbonic acid (2) | HCO ₃ ⁻ | $CO_3^{\frac{n}{2}}$ | 5.6×10^{-11} | | Citric acid (1) | HOOC—CH ₂ —C(OH)
(COOH) OCH ₂ —COOH | HOOC—CH ₂ —C(OH)
(COOH) —CH ₂ —COO ⁻ | 8.14×10^{-4} | | Citric acid (2) | HOOC—CH ₂ —C(OH) (COOH)
OCH ₂ —COO ⁺ | "OOC—CH ₂ —C(OH)
(COOH) —CH ₂ —COO" | 1.78 × 10 ⁻¹⁵ | | Cirric acid (3) | TOOC—CH2—C(OH) (COOH) OCH2—COOT | CH ₂ —COO" | 3.9×10^{-6} | | Phosphoric acid (1) | $\mathrm{H_{3}PO_{4}}$ | H ₂ PO ⁻ 4 | 7.25×10^{-3} | | Phosphoric acid (2) | $H_2PO_4^-$ | HPO ₄ 2- | 6.31×10^{-8} | | Phosphoric acid (3) | $\mathrm{HPO_4^{2-}}$ | PO ⁴ 3- | 3.98×10^{-13} | - 1.1. Which two weak acids listed in the Table are triprotic? (2) - 1.2. How would you prepare 100 mL of a 0.2 M HOOC-CH₂-COO⁻-OOC-CH₂-COO⁻ buffer at pH 6.0? The buffer should be prepared from monosodium malonate $M(NaOOC-CH_2-COO) = 126.04$ g/mol and disodium malonate $M(Na_2OOC-CH_2-COO) = 148.03$ g/mol. (7) ## Question 2 (11) - 2.1. Draw the structure of the amino acid isoleucine and label all the chiral carbon atoms with a star (*). (5) - 2.2. Draw the structure of the amino acid tryptophan, and label all the functional groups. (6) # Question 3 (11) - 3.1. Give the dissociation reaction for the amino acid aspartic acid. (6) $pKa(\alpha\text{-COOH}) = 2.09$; $pKa(\alpha\text{-NH}_3^+) = 9.82$; pKa(R) = 3.86 - 3.2. What is the net charge of aspartic acid at pH 10? (1) - 3.3. Give an example of two cyclic peptide hormones, that are very similar in primary structure, but with different functions. Give the names and the functions of the two hormones. (4) # Question 4 (16) - 4.1. Describe how pH-mediated change in the quarternary structure of hemoglobin explain the Bohr effect. (12) - 4.2. The following diagram shows the binding curves of two oxygen binding proteins. Consider the curves carefully and answer the question that follow: Compare protein 1 and protein 2 in terms of the cooperativity of binding and motivate your answer. (4) ### Question 5 (15) Compare the composition of ribosomes in prokaryotes and eukaryotes. (15) # Question 6 (5) - 6.1. Draw the structure of the fatty acid that can be denoted by the following notation: $16:1-\Delta^9$. (3) - 6.2. What is the definition of a wax? Give an example. (2) # Question 7 (6) - 7.1. Draw the structures of the following monosaccharides: - 7.1.1. α-D-glucopyranose (3) - 7.1.2. α -D-fructofuranose (3) # Question 8 (7) - 8.1. What disaccharides are made of the following monosaccharides? - 8.1.1. galactose- β -1,4-glucose (1) - 8.1.2. glucose- α -1,4-glucose (1) - 8.1.3. glucose-β-1,4-glucose (1) - 8.1.4. glucose- α -1,2-fructose (1) - 8.2. What are the cellular functions of: - 8.2.1. heparin (1) - 8.2.2. condroitin sulphates (1) - 8.2.3. hyaluronate (1) # **TOTAL [80]**