

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS MODULE: ASME1A1 COURSE: **CALCULUS OF ONE VARIABLE FUNCTIONS FOR ENGINEERS** (ALTERNATIVE SEMESTER) **CAMPUS:** APK **EXAM: JANUARY 2019** DATE: **TBA** TIME: **TBA** ASSESSOR: MR W VAN REENEN **INTERNAL MODERATOR: DR A CRAIG DURATION:** 2 HOURS **MARKS: 70 SURNAME AND INITIALS** STUDENT NUMBER **CONTACT NUMBER NUMBER OF PAGES:** 1+13 PAGES (including front page)

ANSWER ALL THE QUESTIONS IN PEN

NO CALCULATORS ALLOWED.

If you require extra space, continue on the adjacent blank page next to it

and indicate this clearly.

ASME1A1 SPECIAL SUPPLEMENTARY EXAM

INSTRUCTIONS:

Question 1 [10 marks]

For questions 1.1 - 1.10, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	c	d	е
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
1.10					

[1]

1.1 Solving
$$|x-1| = |x+1|$$
 yields:

(a) $x = \pm 2$

(b)
$$x = \pm 1$$

(c)
$$x = 0$$

(d) No solutions.

(e) None of the above

1.2 The correct expansion of
$$\sum_{i=3}^{5} (-1)^i \frac{3^i}{2^i}$$
 is: [1]

(a)
$$-\frac{27}{4} - \frac{81}{8} - \frac{243}{16}$$

(b)
$$-\frac{27}{8} + \frac{81}{16} - \frac{243}{32}$$

(c)
$$-\frac{9}{8} + \frac{27}{16} - \frac{81}{32}$$

(d)
$$-\frac{27}{8} - \frac{81}{16} - \frac{243}{32}$$

(e) None of the above

1.3 $1 + \tan^2 x$ equals:

[1]

- (a) $\csc x$
- (b) $\sec x$
- (c) $1 \sin^2 x$
- (d) $\tan^2 x$
- (e) None of the above

1.4 If $f(x) = x^4 - 1$, $g(x) = \sqrt[4]{x^2 - 1}$ and $h(x) = \sqrt{x + 2}$, then $(f \circ g \circ h)(x)$ equals: [1]

- (a) x^2
- (b) x
- (c) 2x
- (d) x 1
- (e) None of the above

1.5 Solving |2x-5| < 3 yields: [1]

- (a) $x \le -1$ or $x \ge 4$
- (b) -4 < x < -1
- (c) x < 4 or x > -1
- (d) 1 < x < 4
- (e) None of the above

1.6 The derivative of $y = 10^x$ is: [1]

- (a) $x10^{x-1}$
- (b) $10^x \ln x$
- (c) $10^x \ln 10$
- (d) $\ln 10^x \cdot \frac{1}{10}$
- (e) None of the above

1.7 If f is differentiable, then $\frac{d}{dx}(f(\sqrt{x})) =$ [1]

- (a) $\frac{f'(x)}{2\sqrt{x}}$
- (b) $f'(x)\sqrt{x}$
- (c) $\frac{f'(\sqrt{x})}{2\sqrt{x}}$
- (d) $\frac{f'(x)}{\frac{1}{2}\sqrt{x}}$
- (e) None of the above

1.8 The negation of the conditional proposition $p \to q$ is: [1]

- (a) $\neg p \land \neg q$
- (b) $p \vee \neg q$
- (c) $\neg p \lor \neg q$
- (d) $p \wedge \neg q$
- (e) None of the above

1.9 Which of the following is a counter example or the statement: "If n is a non negative integer, then $2^n + 1$ is a prime number".

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) None of the above

1.10 If $\int_0^9 f(x)dx = 12$ and $\int_0^9 g(x)dx = 16$, then $\int_0^9 (2f(x) + 3g(x)) dx =$ [1]

- (a) 72
- (b) 68
- (c) 252
- (d) 28
- (e) None of the above

Question 2 [8 marks]

- (a) Rewrite the first order statement in natural language: $(\forall x \in \mathbb{R})(x > 2 \to x^2 > 4)$ [1]
- (b) Write the negation of the sentence given in 2(a) using natural language. [2]

(c) Determine whether the following statement is true or false: For any positive integers m and n, mn = m + n [2]

(d) Use proof by contraposition to show that if $\sin(\frac{k\pi}{2}) = -1$, then k = 7 [3]

$\underline{\text{Question 3}} \ [3 \ \text{marks}]$

Solve for
$$x$$
 if: $\frac{2x^2}{x+5} \le \frac{x}{x+5} + \frac{3}{x+5}$. [3]

Question 4 [3 marks]

If
$$\tan \theta = -\sqrt{3}$$
, $\pi < \theta < 2\pi$, find the five other trigonometric ratios. [3]

Question 5 [7 marks]

(a) If f is the function defined below, determine whether f is even, odd, or neither: $f(x) = 2 - 2\sin x$ [2]

(b) Determine the inverse of $f(x) = 2\ln(2 - e^x)$. [3]

(c) Sketch the graph of $y = \cot \theta$, for $0 < \theta < 2\pi$. Indicate any intercepts and asymptotes. [2]

Question 6 [4 marks]

Let f be the function defined by $f(x) = \ln(x+1) + 1$,

(a) State the domain. [1]

(b) State the range. [1]

(c) Sketch the graph of f by making use of translations. Draw a separate sketch for each transformation. Mark any asymptotes or intercepts with the axes. [2]

$\underline{\text{Question}} \ \underline{7} \ [4 \ \text{marks}]$

Determine the following limits:

(a)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$

[2]

(b)
$$\lim_{x \to \infty} \frac{\sqrt{9x^8 - x + 1}}{3x^4 + 5x}$$

[2]

Question 10 [5 marks]

- (a) State the Fundamental Theorem of Calculus (Part 1 and 2).
- [2]

(b) Use part 1 of the theorem to find g'(x) given that $g(x) = \int_1^{3\sqrt{x}} \frac{3t^2}{1+t} dt$. [3]

Question 11 [6 marks]

Evaluate the following integrals:

(a)
$$\int_0^2 \frac{x}{x+1} dx$$
 [3]

(b) $\int x^5(x^3+2)^2 dx$ [3]

Question 12 [4 marks]

Prove the following statement: "If f is differentiable at a, then f is continuous at a". [4]

EXTRA Work sheet