UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE: ASMA1A1

COURSE: CALCULUS OF ONE VARIABLE FUNCTIONS

(ALTERNATIVE SEMESTER)

CAMPUS: APK

SUPPLEMENTARY EXAM: JANUARY 2019

ASSESSOR:

MS ML JUGA

INTERNAL MODERATOR:

DR A CRAIG

DURATION: 2 HOURS

MARKS: 70

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: 15 PAGES (including front page)

INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN

NO CALCULATORS ALLOWED.

If you require extra space, continue on the adjacent blank page next to it and indicate this clearly

Question 1 [8 marks]

For questions 1.1 - 1.8, choose one correct answer, and make a cross (X) in the correct block.

Question	a	b	c	d	е
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					

[1]

1.1 Solve for x in the equation: |4x - 3| = 2.

(a)
$$x = -\frac{1}{4}$$
 or $x = -\frac{5}{4}$

(b)
$$x = \frac{1}{4}$$
 or $x = \frac{5}{4}$

(c)
$$x = \frac{1}{4}$$
 or $x = -\frac{5}{4}$

(d)
$$x = -\frac{1}{4}$$
 or $x = \frac{5}{4}$

(e) None of the above

1.2
$$\cot^2 \theta =$$
 [1]

(a)
$$\csc^2 \theta + 1$$

(b)
$$\csc^2 \theta - 1$$

(c)
$$\tan^2 \theta$$

(d)
$$1 - \sin^2 \theta$$

(e) None of the above

1.3 The correct expansion of
$$\sum_{k=1}^{5} (-1)^k \frac{3^k}{2^k}$$
 is: [1]

(a)
$$-\frac{3}{2} + \frac{3^2}{2^2} - \frac{3^3}{2^3} + \frac{3^3}{2^4} - \frac{3^5}{2^5}$$

(b)
$$\frac{3}{2} = \frac{3^2}{2^2} + \frac{3^3}{2^3} - \frac{3^3}{2^4} + \frac{3^5}{2^5}$$

(c)
$$-\frac{3}{2} - \frac{3^2}{2^2} - \frac{3^3}{2^3} - \frac{3^3}{2^4} - \frac{3^5}{2^5}$$

(d)
$$\frac{3}{2} + \frac{3^2}{2^2} - \frac{3^3}{2^3} + \frac{3^3}{2^4} - \frac{3^5}{2^5}$$

(e) None of the above

1.4 If
$$f(x) = x^4 - 1$$
, $g(x) = \sqrt[4]{x^2 - 2}$ and $h(x) = \sqrt{x + 2}$, then $(f \circ g \circ h)(x)$ equals:

(a) x^2

(c)
$$2x$$

(d)
$$x - 1$$

(e) None of the above

1.5 solving
$$|3x-4| < 1$$
 yields: [1]

(a)
$$x \le 1$$
 or $x \ge \frac{5}{3}$

(b)
$$1 < x < \frac{5}{3}$$

(c)
$$x < -1$$
 or $x > \frac{-5}{3}$

(d)
$$x \ge 1$$
 or $x \le \frac{5}{3}$

(e) None of the above

1.6 $\lim_{x\to 0^+} (\sin ax + 1)^{\cot x}$ gives rise to the indeterminate form:

[1]

- (a) 1^0
- (b) 0^0
- (c) 1[∞]
- (d) 0[∞]
- (e) None of the above

1.7 The inverse of $\neg q \rightarrow p$ is:

[1]

- (a) $\neg q \land p$
- (b) $\neg p \rightarrow q$
- (c) $\neg q \rightarrow \neg p$
- (d) $p \rightarrow q$
- (e) None of the above

1.8 The derivative of $h(r) = \frac{ae^r}{b + e^r}$ is:

[1]

(a)
$$\frac{abe^r}{(b+e^r)^2}$$

(b)
$$\frac{abe^{2r}}{(a+e^r)^2}$$

(c)
$$\frac{ae^r}{(b+e^r)^2}$$

(d)
$$\frac{e^{2r}}{(b+e^r)^2}$$

(e) None of the above

Question 2 [4 marks]

Solve for
$$x$$
 if: $\frac{x^2}{x-1} \le \frac{3x}{x-1} + \frac{10}{x-1}$

$\underline{\text{Question 3}} \ [2 \ \text{marks}]$

Sketch the graph of $y = \sec \theta$ for $\theta \in [0, 2\pi]$. Indicate clearly the intercepts and asymptotes if any.

Question 4 [8 marks]

Given the following case-defined function:

$$f(x) = \begin{cases} e^x + 1 & \text{if } x > 0 \\ -x^2 + 2 & \text{if } x \le 0 \end{cases}$$

[2]

4.1 Graph the function

4.2 Determine:

4.2.1
$$\lim_{x \to 0^-} f(x)$$
 [1]

4.2.2
$$\lim_{x \to 0^+} f(x)$$
 [1]

$$4.2.3 \quad \lim_{x \to 0} f(x) \tag{1}$$

4.2.4
$$f(0)$$
 [1]

4.3 Is
$$f$$
 continuous at $x = 0$? Explain. [2]

Question 5 [4 marks]

If g is the function defined by $g(x) = -\ln(x-1) + 1$

5.1 Sketch the graph of f by making use of translations. Do a separate sketch for each transformation, indicating the intercepts and asymptotes if any. [2]

5.2 State the domain.

[1]

5.3 State the range.

[1]

Question 6 [2 marks]

If f is the function defined below, determine whether f is odd even or neither:

$$f(x) = -3 - 2\sin x$$

$\underline{\text{Question 7}} \ [3 \ \text{marks}]$

If $\tan \theta = -\sqrt{3}$ and $\pi < \theta < 2\pi$, find the other five trigonometric ratios.

$\underline{\text{Question 8}} \; [4 \; \text{marks}]$

Determine:

(a)
$$\lim_{x \to -3} \frac{x^3 - 27}{x - 3}$$
 [2]

(b)
$$\lim_{x \to \infty} \frac{\sqrt{9x^8 + x + 10}}{3x^4 + 5x}$$
 [2]

If $n(x) = \sqrt{x}$, determine n'(x) by making use of first principles.

$\underline{\textbf{Question 10}} \ [3 \ \text{marks}]$

Given the propositional formula $\neg p \rightarrow \neg q$:

- (a) Give the contrapositive. [1]
- (b) Give the converse. [1]
- (c) Rewrite the proposition using only the \vee , \wedge , or \neg connectives. [1]

$\underline{\text{Question } 11} \ [10 \ \text{marks}]$

(a) Prove using mathematical induction that for any integer $n \ge 1$, $n^5 - n$ is divisible by 5. [5]

(b) Prove by contraposition: If $m^2 + n^2 = 0$, then n = 0 and m = 0

[2]

(c) Is the following statement true or false? Hence prove it or disprove by a counter-example:

 $\forall n \in \mathbb{Z}, n \geq 1, m \geq 1$, if m is odd and n is even, then m + n is divisible by 3. [3]

Question 12 [2 marks]

Prove the following identity:

$$\tanh(\ln x) = \frac{x^2 - 1}{x^2 + 1}$$

Question 13 [5 marks]

Find the derivatives of the following. Simplify where possible.

(a)
$$y = \cosh x (1 + \ln \cosh x)$$

[3]

(b)
$$y = \ln(e^{-x} + xe^{-x})$$

[2]

 $\underline{\text{Question } 14} \; [3 \; \text{marks}]$

$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

Compute: $\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$. (Use L'Hospital's rule if necessary.)

Question 15 [5 marks]

(a) Use part 1 of the Fundamental Theorem of Calculus to find g'(x) given that $g(x)=\int_{2x}^{3x}\frac{u^2-1}{u^2+1}\;du$ [3]

(b) Use part 2 of the same theorem to evaluate $\int_{-1}^{1} e^{u+1} du$. [2]

Question 16 [4 marks]

State and prove the Product Rule of differentiation.

Extra worksheet.

