UNIVERSITY OF JOHANNESBURG

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMA	ATICS
--	-------

MODULE: ASMA1A1

COURSE: CALCULUS OF ONE VARIABLE FUNCTIONS

(ALTERNATIVE SEMESTER)

CAMPUS: APK

EXAM: NOVEMBER 2018

DATE: 19 NOVEMBER 2018

ASSESSOR:

MS ML JUGA

INTERNAL MODERATOR:

DR A CRAIG

DURATION: 2 HOURS

MARKS: 70

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: 13 PAGES (including front page)

INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN

NO CALCULATORS ALLOWED.

If you require extra space, continue on the adjacent blank page next to it and indicate this clearly

Question 1 [9 marks]

For questions 1.1 - 1.9, choose one correct answer, and make a cross (X) in the correct block.

Question	а	b	c	d	е
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					

1.1 Which of the following is not an exact ratio for $\frac{2\pi}{3}$?

[1]

- (a) $\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$
- (b) $\cot \frac{2\pi}{3} = \frac{1}{\sqrt{3}}$
- (c) $\csc \frac{2\pi}{3} = \frac{2}{\sqrt{3}}$
- (d) $\sec \frac{2\pi}{3} = -2$
- (e) None of the above
- 1.2 Which of the following is not an identity of $\cos 2x$?

[1]

- (a) $2\cos^2 x + 1$
- (b) $\cos^2 x \sin^2 x$
- (c) $1 2\sin^2 x$
- (d) $-\ln e + 2\cos^2 x$
- (e) None of the above

1.3 The correct expansion of
$$\sum_{i=1}^{3} (-1)^{i+1} \frac{3^i}{i+1}$$
 is:

[1]

(a)
$$-\frac{3}{2} + \frac{3^2}{3} - \frac{3^3}{4}$$

(b)
$$\frac{3}{2} + \frac{3^2}{3} + \frac{3^3}{4}$$

(c)
$$\frac{3}{2} - \frac{3^3}{4} + \frac{3^4}{5}$$

(d)
$$-\frac{3}{2} - \frac{3^2}{3} - \frac{3^3}{4}$$

(e) None of the above

1.4 If
$$f(x) = x^3 - 1$$
, $g(x) = \sqrt[3]{x^2 - 1}$ and $h(x) = \sqrt{x + 2}$, then $(f \circ g \circ h)(x)$ equals:

[1]

(a)
$$\sqrt{x}$$

(c)
$$\sqrt{x+1}$$

(d)
$$x + 1$$

(e) None of the above

[1]

1.5 Solving
$$|7x + 1| > 2$$
 yields:

(a)
$$x > -\frac{2}{7}$$
 or $x < \frac{1}{7}$

(b)
$$-\frac{2}{7} \le x \le \frac{1}{7}$$

(c)
$$x < -\frac{2}{7}$$
 or $x > \frac{1}{7}$

(d)
$$x \le -\frac{2}{7}$$
 or $x > \frac{1}{7}$

(e) None of the above

1.6	Which of the following is not a proposition?	[1]
(a)	UJ is a university	
(b)	Durban is the capital of South Africa	
(c)	8 minus 5 equals 10	
(d)	x is an integer	
(e)	None of the above	
1.7	The contrapositive of $\neg p \rightarrow q$ is:	[1]
(a)	$q \rightarrow p$	
(b)	p o q	
(c)	$\neg q \rightarrow \neg p$	
(d)	$\neg p \rightarrow \neg q$	
(e)	None of the above	
1.8	The derivative of $y = e^{\ln x} + \ln e^x$ is:	[1]
(a)	1	
(b)	e	
(c)	$\ln x$	
(d)	2	
(e)	None of the above	
1.9	Evaluating $\int_{-1}^{1} \frac{\tan x}{1 + x^2 + x^4} dx$ yields:	[1]
(a)	π	
(b)	-1	
(c)	0	

(d) 1

(e) None of the above

Question 2 [8 marks]

Given the following case-defined function:

$$f(x) = \begin{cases} \ln x & \text{if } x > 1\\ x^2 - 1 & \text{if } x < 1 \end{cases}$$

2.1 Graph the function

[2]

2.2 Determine:

2.2.1
$$\lim_{x \to 1^-} f(x)$$
 [1]

2.2.2
$$\lim_{x \to 1^+} f(x)$$
 [1]

$$2.2.3 \quad \lim_{x \to 1} f(x) \tag{1}$$

2.2.4
$$f(1)$$
 [1]

2.3 Is f differentiable at x = 1? Explain using your results from 2.2. [2]

$$\frac{\text{Question 3}}{\text{Solve for }x} \underbrace{ [4 \text{ marks}]}_{\text{x}} \quad \times \quad -\frac{3}{x^2+3x-4}$$

Question 4 [2 marks]

If g is the function defined below, determine whether g is odd, even or neither: $g(x) = 2\sin x - 5\cos x$

Question 5 [2 marks]

Sketch the graph of $y = \csc \theta$ for $\theta \in (0, 2\pi)$. Include all intercepts and asymptotes if any.

Question 6 [4 marks]

If j is the function defined by $j(x) = 2e^{(x-1)} + 1$

5.1 Sketch the graph of f by making use of translations. Do a separate sketch for each transformation, showing clearly all intercepts.

5.2 State the domain.

[1]

5.3 State the range

[1]

Question 7 [3 marks]

If $m(x) = \frac{x+2}{x-2}$, determine m'(x) by making use of first principles.

Question 8 [4 marks]

Determine:

(a)
$$\lim_{x \to 1} \frac{x^4 - 1}{x - 1}$$
 [2]

(b)
$$\lim_{x \to \infty} \frac{\sqrt{9x^4 - x}}{x^2 + 3}$$
 [2]

Question 9 [5 marks]

By completing the truth table below, Determine whether or not the following propositions are logically equivalent:

$$p \to (q \to r) \text{ and } (p \to q) \to r$$

р	q	r		
T	T	T		
T	T	F		
T	F	T		
T	F	F		
F	T	T		
F	T	F		
F	F	T		
F	F	F		

Question 10 [4 marks]

Let P(x) be the predicate "x is an even number" and Q(x) be the predicate "x is divisible by 2".

(a) Write out in words:
$$\forall x \in \mathbb{Z}(\neg Q(x) \to \neg P(x))$$

[2]

(b) Write out the negation of (a) in words

[2]

Question 11 [5 marks]

Find the derivatives of the following. Simplify where possible.

(a)
$$y = x^{\sqrt{x}}$$

(b)
$$y = \sin(\sin x)$$
 [2]

$\underline{\text{Question } 12} \; [5 \; \text{marks}]$

Prove using mathematical induction that for any integer $n \ge 1$, $n^5 - n$ is divisible by 5.

Question 13 [3 marks]

Find an equation of the tangent to the curve: $y = e^x \cos x$, at x = 0

Question 14 [4 marks]

Compute: $\lim_{x\to 1^+} \left(\frac{1}{\ln x} - \frac{1}{x-1}\right)$. (Use l'Hospital's rule if necessary.)

Question 15 [5 marks]

(a) Use part 1 of the Fundamental theorem of calculus to find g'(x) given that: $g(x)=\int_{1-2x}^{1+2x}t\sin t\ dt$

$$g(x) = \int_{1-2x}^{1+2x} t \sin t \ dt$$

[3]

(b) Use part 2 of the same theorem to evaluate $\int_1^5 \frac{1}{x} dx$.

[2]

Question 16 [3 marks]

Given
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$
, prove that: $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$.

$$\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

Extra worksheet.

