

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING MODULE COMPUTER SCIENCE 3B CSC3B10 CAMPUS AUCKLAND PARK CAMPUS (APK) SUPPLEMENTARY EXAM JANUARY **DATE:** 2018-01 **SESSION:** main MR. J. DU TOIT LECTURER(S): **MR. A. MAGANLAL MODERATOR: EXTERNAL: PROF. S. GRUNER (UP)**

DURATION: 180 MINUTES

MARKS: 150

Please read the following instructions carefully:

- 1. Answer **all** the questions.
- 2. Answer questions in order.
- 3. Answer only in the examination books provided.
- 4. The use of calculators is *not* permitted.
- 5. Write *cleanly* and *legibly*.
- 6. This paper contains 9 questions.
- 7. This paper consists of 6 pages.

QUESTION 1

- (a) **Discuss** the *differences* between *user mode* and *kernel mode*. The discussion [04] must address the aspects of *access* in these modes as well as *abstraction*.
- (b) The CPU *processes* instructions in *three (3) phases.* Name the *three phases* and [06] **provide** a description of each.
- (c) *Input* and *output* can be done in three (3) different ways. One of the ways is through [04] *busy waiting*. Discuss the other two (2) ways of *handling I/O*.
- (d) **Provide** an example of a *device* that has a *embedded operating systems*. [01]

QUESTION 2

- (a) **List** the four (4) *required conditions* to *avoid race conditions* when *accessing* [04] *shared memory.*
- (b) **Discuss** *monitors*, *semaphores*, and *locking variables* as *methods* of *synchron-*[06] *isation*.
- (c) Consider the following processes in a *non-preemptive* system:

[05]

Total: 15

Process	Priority	Burst Time
A	2	5
В	3	2
С	1	15
D	2	6
(1.1.		-)

(Highest priority = 0)

Using the *priority scheduling with round-robin equal priority* algorithm with a 5msec quanta provide the order execution in the following format (copy and complete the table into your answer sheet):

Time Spent	
Process	
Priority when run	

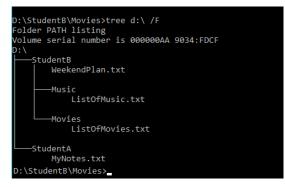
Total: 15

~~ Exam continues on the next page.~~

QUESTION 3

(a) Given a fictional CPU. Determine the 7-bit physical memory address in decimal [06] for the following 8-bit virtual address, given the following page table.
 Virtual address: 253.

Index	Page Frame	Present
7	00	1
6	00	0
5	10	1
4	00	0
3	01	1
2	11	1
1	00	0
0	00	0


Show all the steps from converting from decimal to binary and then from looking up the address to converting back from binary to decimal.

- (b) Discuss the *clock page-replacement* algorithm. Your discussion must include the [06] *data structure* that the algorithm uses and the *operation* of the algorithm as well as the *advantage* of the algorithm over *second chance page-replacement*.
- (c) Name and briefly describe a solution that minimises the size of a page table [03]

Total: 15

QUESTION 4

(a) Given the command prompt below, **answer** the following questions:

- i. Provide the *absolute path* for the *working directory*.
 ii. Provide the *relative path name* for the file called MyNotes.txt from the current working directory
- (b) Answer the following questions related to directories
 - i. **Describe** the *purpose* of a directory.
 - ii. **Describe** the *data* of a directory.
- (c) **Describe**, with the aid of a diagram, how *linked-list allocation* works for storing [04] files.
- (d) **Describe** one caching solution that minimises the risk of losing data, when using a file cache. [03]

Total: 15

[02]

[02]

[02]

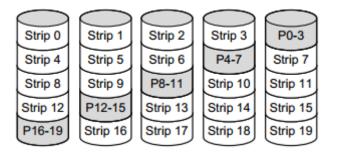
[02]

~~Exam continues on the next page.~~

[05]

QUESTION 5

- (a) List the five functions provided by *device-independent I/O software*.
- (b) Describe the concept of a device driver. Your discussion should include the role [04] of the device driver, which layer device driver typically reside inside an operating system and who is typically responsible for writing device drivers?
- (c) On an imaginary disk with 40 cylinders a request comes in to read cylinder 11. While [02] the hard disk is busy servicing the request on cylinder 11, requests to the following cylinders come in:


12, 37, 7, 14, 26 and 32. Given these cylinders, if the operating system uses the *shortest seek first* algorithm,

write the order in which the cylinders will be serviced.

Write only the cylinder numbers in order of service.

(Example if you think it will be cylinder 1 then 2 then 3 etc, write 1 2 3).

- (d) Briefly **describe** three (3) factors that are affected by a disk arm scheduling algorithm. [03]
- (e) **Name** the raid level depicted in the diagram below.

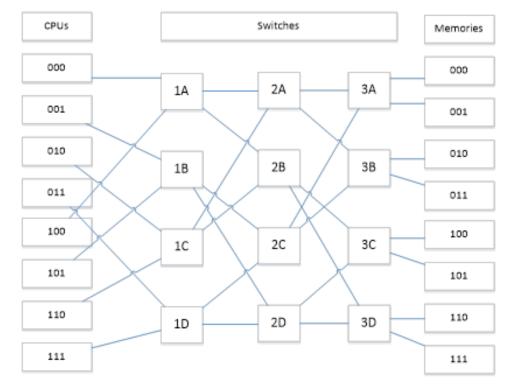
Total: 15

[01]

QUESTION 6

- (a) **List** the four (4) conditions for a deadlock to occur. [04]
- (b) **Draw** a *resource allocation graph* for the following states **and** specify whether [04] the system is in a deadlock:
 - Process X holds C and requests B and requests A
 - Process Y holds A and requests B
- (c) With regards to deadlocks, resources can be classified as two different types. List [03] and discuss both of these types of resources and the impact of these resource types on deadlocks.

~~Exam continues on the next page.~~


(d) Consider the following resource matrices and vectors (E - existing resources, A - [04] available resources):

	E = (L Printers	1 DVD Roms	ഗ Scanners	പ Tape Drives)		A = (Printers 	OVD Roms	L Scanners	Tape Drives)
	Currer	nt all	oca	tion	mat	rix			Red	ques	t m	atrix	
Process 1		1	0	1	2				0	0	1	0	
Process 2	C =	0	1	1	2			R =	1	0	5	0	
Process 3		0	0	2	0				2	0	0	0	

Use the deadlock detection algorithm to determine if the current state is in a deadlock. For each round of the algorithm provide the available resource vector (A vector).

After the final round of the algorithm state whether system is **deadlocked or not**.

 Where the hypervisor runs in context of the architectural layers. How it is possible to execute priviledge instructions inside a guest operating system. (b) Discuss how paravirtualisation works. Include in your disucssion: A definition of paravirtualisation. How it is possible for guest operating systems to run on bare metal as well as hypervisors. (c) Discuss multiprocessor synchronisation, along with considerations on how it can be achieved 		Total: 15
 Where the hypervisor runs in context of the architectural layers. How it is possible to execute priviledge instructions inside a guest operating system. (b) Discuss how paravirtualisation works. Include in your disucssion: A definition of paravirtualisation. How it is possible for guest operating systems to run on bare metal as well as hypervisors. (c) Discuss multiprocessor synchronisation, along with considerations on how it can be achieved (d) Briefly discuss time sharing and space sharing in context of related and unrelated threads in a multi-processor environment 	UESTION 7	_
 A definition of paravirtualisation. How it is possible for guest operating systems to run on bare metal as well as hypervisors. (c) Discuss multiprocessor synchronisation, along with considerations on how it can be achieved (d) Briefly discuss time sharing and space sharing in context of related and unrelated threads in a multi-processor environment 	 Where the hypervisor runs in context of the architectural layers. How it is possible to execute priviledge instructions inside a guest operatin 	[04] g
 achieved (d) Briefly discuss time sharing and space sharing in context of related and unrelated [(threads in a multi-processor environment 	 A definition of paravirtualisation. How it is possible for guest operating systems to run on bare metal as well a 	[04] as
threads in a multi-processor environment		e [06]
~~Exam continues on the next page.~~		d [02]
	~~Exam continues on the next page.~~	

(e) Given the following *omega switching network* answer the questions which follow:

- i. Which switches will be accessed when CPU 011 needs to access Memory 010. [01]
- ii. Which switches will be accessed when CPU 101 needs to access Memory 011. [01]
- iii. Can the request in (i) and (ii) be simultaneously processed? Justify your answer. [02]

Total: 20

QUESTION 8

- (a) Describe the differences between secret key (symmetric) cryptography and publickey (asymmetric) cryptography with regards to then *number* of keys in encryption and decryption.
- (b) Given the following protection matrix. List the *capability lists (C-List)* for the [03] processes owned by users, User1, User2 and User3.

	RA.docx	Summary.xlsx	Shooter.exe
Student 1		Read	Read, Execute
Student 2	Read, Write		Read, Execute
Student 3		Read,Write	

(c) **Briefly** describe what steganography is, and provide two examples of where it can [03] be used.

Total: 10

~~Exam continues on the next page.~~

QUESTION 9

- (a) When calling a function *the standard calling convention* can be used. Discuss [05] this convention, include in your discussion details about *the stack, the parameters to a function*, and *the local variables for a function*.
- (b) Draw the stack as it will exist after the following function in the C programming [05] language is called (after the stack frame is set up). The function contains no local variables.

```
void getMax(int* a, int b)
```

- (c) Show the conversion of -25.0625₁₀ into *IEEE Single-Precision Representation*. [05] Show all the steps of your calculation and show the final result as a hexadecimal number.
- (d) Write an 80x86 assembly program that contains the following function:

A *decrease* function that takes the following parameters:

arr array address
size array size

The function will decrease each element in the array by 5. The function operates iteratively.

Note: the *decrease* function must make use of iteration. (If you provide a solution that does not use iteration you will not be eligible for the full allocation of marks)

Total: 30

[15]

~~ THE END ~~