

FACULTY OF SCIENCE

ACADEMY OF COMPUTER SCIENCE AND SOFTWARE ENGINEERINGCOMPUTER SCIENCE 3B CSC3B10
CAMPUS AUCKLAND PARK CAMPUS (APK)
SUPPLEMENTARY EXAMJANUARY
DATE: 2018-01SESSION: main
LECTURER(S):
MR. J. DU TOIT
MODERATOR:EXTERNAL: PROF. S. GRUNER (UP)
DURATION: 180 MINUTESMARKS: 150

Please read the following instructions carefully:

1. Answer all the questions.
2. Answer questions in order.
3. Answer only in the examination books provided.
4. The use of calculators is not permitted.
5. Write cleanly and legibly.
6. This paper contains 9 questions.
7. This paper consists of 6 pages.

QUESTION 1

(a) Discuss the differences between user mode and kernel mode. The discussion must address the aspects of access in these modes as well as abstraction.
(b) The CPU processes instructions in three (3) phases. Name the three phases and provide a description of each.
(c) Input and output can be done in three (3) different ways. One of the ways is through busy waiting. Discuss the other two (2) ways of handling I/O.
(d) Provide an example of a device that has a embedded operating systems.

QUESTION 2

(a) List the four (4) required conditions to avoid race conditions when accessing shared memory.
(b) Discuss monitors, semaphores, and locking variables as methods of synchronisation.
(c) Consider the following processes in a non-preemptive system:

Process	Priority	Burst Time
A	2	5
B	3	2
C	1	15
D	2	6
Highest priority $=0)$		

Using the priority scheduling with round-robin equal priority algorithm with a 5 msec quanta provide the order execution in the following format (copy and complete the table into your answer sheet):

Time Spent	\ldots	\ldots
Process	\ldots	\ldots
Priority when run	\ldots	\ldots

$\sim \sim$ Exam continues on the next page. $\sim \sim$

QUESTION 3

(a) Given a fictional CPU. Determine the 7-bit physical memory address in decimal for the following 8-bit virtual address, given the following page table.
Virtual address: 253.

Index	Page Frame	Present
	Pa	00
6	00	0
	10	1
	00	0
	01	1
2	11	1
1	00	0
	00	0

Show all the steps from converting from decimal to binary and then from looking up the address to converting back from binary to decimal.
(b) Discuss the clock page-replacement algorithm. Your discussion must include the data structure that the algorithm uses and the operation of the algorithm as well as the advantage of the algorithm over second chance page-replacement.
(c) Name and briefly describe a solution that minimises the size of a page table

QUESTION 4

(a) Given the command prompt below, answer the following questions:

i. Provide the absolute path for the working directory.
ii. Provide the relative path name for the file called MyNotes.txt from the current working directory
(b) Answer the following questions related to directories
i. Describe the purpose of a directory.
ii. Describe the data of a directory.
(c) Describe, with the aid of a diagram, how linked-list allocation works for storing files.
(d) Describe one caching solution that minimises the risk of losing data, when using a
file cache.

QUESTION 5

(a) List the five functions provided by device-independent I/O software.
(b) Describe the concept of a device driver. Your discussion should include the role of the device driver, which layer device driver typically reside inside an operating system and who is typically responsible for writing device drivers?
(c) On an imaginary disk with 40 cylinders a request comes in to read cylinder 11. While the hard disk is busy servicing the request on cylinder 11, requests to the following cylinders come in:
$12,37,7,14,26$ and 32 . Given these cylinders, if the operating system uses the shortest seek first algorithm,
write the order in which the cylinders will be serviced.
Write only the cylinder numbers in order of service.
(Example if you think it will be cylinder 1 then 2 then 3 etc, write 123).
(d) Briefly describe three (3) factors that are affected by a disk arm scheduling algorithm.
(e) Name the raid level depicted in the diagram below.

QUESTION 6

(a) List the four (4) conditions for a deadlock to occur.
(b) Draw a resource allocation graph for the following states and specify whether the system is in a deadlock:

- Process X holds C and requests B and requests A
- Process Y holds A and requests B
(c) With regards to deadlocks, resources can be classified as two different types. List and discuss both of these types of resources and the impact of these resource types on deadlocks.

$$
\sim \sim \text { Exam continues on the next page. } \sim \sim
$$

(d) Consider the following resource matrices and vectors (E - existing resources, A available resources):

\(\mathrm{R}=\begin{aligned} \& Request matrix

\&\)| 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 5 | 0 |
| 2 | 0 | 0 | 0 |\end{aligned}

Use the deadlock detection algorithm to determine if the current state is in a deadlock. For each round of the algorithm provide the available resource vector (A vector).
After the final round of the algorithm state whether system is deadlocked or not.

QUESTION 7

(a) Discuss Type-2 Hypervisors. Include in your discussion the following aspects:

- Where the hypervisor runs in context of the architectural layers.
- How it is possible to execute priviledge instructions inside a guest operating system.
(b) Discuss how paravirtualisation works. Include in your disucssion:
- A definition of paravirtualisation.
- How it is possible for guest operating systems to run on bare metal as well as hypervisors.
(c) Discuss multiprocessor synchronisation, along with considerations on how it can be achieved
(d) Briefly discuss time sharing and space sharing in context of related and unrelated threads in a multi-processor environment
$\sim \sim$ Exam continues on the next page. $\sim \sim$
(e) Given the following omega switching network answer the questions which follow:

i. Which switches will be accessed when CPU 011 needs to access Memory 010.
ii. Which switches will be accessed when CPU 101 needs to access Memory 011.
iii. Can the request in (i) and (ii) be simultaneously processed? Justify your answer.

QUESTION 8

(a) Describe the differences between secret key (symmetric) cryptography and public-
key (asymmetric) cryptography with regards to then number of keys in encryption and decryption.
(b) Given the following protection matrix. List the capability lists (C-List) for the processes owned by users, User1, User2 and User3.

	RA.docx	Summary.xlsx	
Shooter.exe			
Student 1		Read	Read, Execute
			Read, Execute
Student 2	Read, Write		
		Read, Write	

(c) Briefly describe what steganography is, and provide two examples of where it can be used.

QUESTION 9

(a) When calling a function the standard calling convention can be used. Discuss this convention, include in your discussion details about the stack, the parameters to a function, and the local variables for a function.
(b) Draw the stack as it will exist after the following function in the C programming language is called (after the stack frame is set up). The function contains no local variables.
|| 1 void getMax(int* a, int b)
(c) Show the conversion of -25.0625_{10} into IEEE Single-Precision Representation. Show all the steps of your calculation and show the final result as a hexadecimal number.
(d) Write an 80×86 assembly program that contains the following function:

```
1.386
2.MODEL flat
.STACK 4096
ExitProcess PROTO NEAR32 stdcall, dwExitCode : DWORD
.DATA
.CODE
    ; function code here
_start:
    ; code omitted
PUBLIC start
END
```

A decrease function that takes the following parameters:
arr array address
size array size
The function will decrease each element in the array by 5 . The function operates iteratively.
Note: the decrease function must make use of iteration. (If you provide a solution that does not use iteration you will not be eligible for the full allocation of marks)

