

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

NATIONAL DIPLOMA IN ANALYTICAL CHEMISTRY FOOD TECHNOLOGY

MODULE PHYSICS PHYXTA2 and PHYXTA2

PHYSICS PHY1AE3

CAMPUS DFC

JUNE EXAMINATION

DATE 05 /31/2018

SESSION: 12:30 - 15:30

ASSESSOR

MR. T.E NEMAKHAVHANI DR. J CHANGUNDEGA

INTERNAL MODERATOR

MR. J MVELASE

DURATION 3 HOURS

MARKS 120

NUMBER OF PAGES: 8 PAGES, INCLUDING 2 INFORMATION SHEETS

INSTRUCTIONS: CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT)

REQUIREMENTS: ANSWER BOOK

ANSWER ALL QUESTIONS IN THE ANSWER BOOK PROVIDED

QUESTION 1

- 1.1. Define *pressure*. (2)
- 1.2. State the correct formula used to calculate pressure. Name all the terms used in the formula. (2)
- 1.3. State the following for pressure:
 - 1.3.1. The correct unit obtained from the formula

1.3.2. The *correct single name* of the above unit.

1.3.3. The abbreviation for your answer to Question 1.3.2

(2)

(2)

(10)

QUESTION 2

2.1. A cylinder is filled with water so that the force at its circular base is **F** N. If the pressure measures **P** kPa, show that the radius of the cylinder's base is given by

$$r = \sqrt{\frac{F}{\pi P}} \tag{5}$$

2.2. A skateboarder lands on all four wheels after riding a railing. If the skateboarder has a weight of 900×10^{-3} kN and the area on the bottom of a single wheel is 1×10^3 mm², what pressure does the skateboard put on the ground? (5)

(10)

QUESTION 3

- 3.1. With the aid of a diagram, show that the pressure due to a liquid is given by $P = g\rho_{\ell}h$. (4)
- 3.2. In the sketch below, the cylinder A has a mass of 13 kg and cross-sectional area of 2 m². The piston B has a cross-sectional area of 15000 mm² and negligible weight. If the apparatus is filled with oil (ρ = 780 kg/m³), with the aid of a complete diagram calculate the force F required for equilibrium.

(10)

QUESTION 4

- 4.1. A rod 3000 mm long expanded 0.3 cm when heated through a temperature of 100 °C. Calculate the coefficient of linear expansion. (3)
- 4.2. A copper rod is 250 cm long at 15 °C. Calculate its length when heated to 35 °C. (4)
- 4.3. A rectangular copper sheet has area 80 mm² at 20 °C. Calculate the area at 100 °C. (4)
- 4.4. Calculate the temperature change required to increase the volume of brass plate by 5%. (5)
- 4.5. A steel cube has a volume of 10 cm × 10 cm × 10 cm at 10 °C. Calculate the volume of the cube at 120 °C. (4)

(20)

QUESTION 5

- 5.1. With the aid of graphs, state the following laws and name all the terms used:
 - 5.1.1. Boyles's law. (4)
 - 5.1.2. Gay Lussac's law. (4)
- 5.2. An enclosed gas has a volume of 10 mm × 10 mm × 10 mm at 17 °C.

 The temperature drops, and the new volume of the gas is 7.5 mm³.

 Calculate the new temperature if the pressure remains constant. (4)
- 5.3. An enclosed gas has a pressure of 1000 kPa at 40 °C. Calculate the pressure at 120 °C if the volume remains constant. (3)

QUESTION 6

- 6.1. Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 10.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (2)
- 6.2. Electrons are added to the pin until the net negative charge is 1.00 nC.

 How many electrons are added for every 10⁹ electrons already present? (2)
- 6.3. Three point charges are located at the corners of an equilateral triangle as shown in the figure below. Calculate the resultant electric force on the $7.00~\mu\text{C}$ charge.

6.4. Three point charges are arranged as shown in the figure below. Determine

6.4.1. The vector electric field that the 6.00 nC and -3 nC charges together create at the origin.

(4)

6.4.2. The vector force on the 5.00 nC charge.

(4)

(20)

QUESTION 7

7.1. Define

7.1.1. Ohm's law. (3)

7.1.2. Electric current. (2)

7.1.3. Resistance. (3)

7.2. If 6 J of work is needed to move a charge of 0.002 C from point A to point B in an electrical field, calculate the potential difference between point A and B.

(3)

7.3. Calculate the work done by a battery to drive a current of 5×10^{-3} A through a conductor for 1 minute, if the potential difference across the conductor is 10 V.

(4)

(15)

QUESTION 8

- 8.1. With the aid of a free body diagram derive the expression for the effective resistance of resistors in series. (10)
- 8.2. For the diagram shown below, calculate:
 - 8.2.1. The effective resistance. (5)
 - 8.2.2. The current through the 20 Ω resistor. (5)

(20)

Total Marks [120]

University of Johannesburg

PHYSICS INFORMATION SHEET

OPTICS

$$1. \quad f = \frac{R}{2}$$

$$2. \quad m = \frac{v}{u}$$

$$3. \quad m = \frac{V}{f} - 1$$

$$5. \quad _{1}n_{2} = \frac{\sin i_{1}}{\sin i_{2}}$$

$$6. \quad n = \frac{c}{v}$$

7.
$$n = \frac{\text{real depth}}{\text{apparent depth}}$$

8.
$$\sin c = \frac{n_1}{n_2}$$

9.
$$n_1 \sin i_1 = n_2 \sin i_2$$

10.
$$n_2 = \frac{n_2}{n_2}$$

8.
$$\sin c = \frac{1}{n_2}$$

$$n_1 \sin i_1 = n_2 \sin i$$

9.
$$n_1 \sin i_1 = n_2 \sin i_2$$

$$n_1 \sin i_1 = n_2 \operatorname{s}$$

$$n_1 = n_2$$

11.
$$A = r_1 + r_2$$

12.
$$\sin i_1 = n \sin r_1$$

13.
$$\sin i_2 = n \sin r_2$$

14.
$$D = (i_1 + i_2) - A$$

$$n = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin A}$$

$$\sin \frac{A}{2}$$

$$\frac{16}{16} p - \frac{1}{1}$$

16.
$$P = \frac{1}{f}$$
17.
$$n\lambda = d\sin\theta$$

18.
$$d=t\left(1-\frac{1}{n}\right)$$

$$18. \quad d = t \left(1 - \frac{1}{n} \right)$$

MECHANICS

1.
$$v = u + at$$

2. $v^2 = u^2 + 2as$

3.
$$s = ut + \frac{1}{2}at^2$$

4.
$$s = vt - \frac{1}{2}at^2$$

$$5. \quad s = \left(\frac{u+v}{2}\right)t$$

F = ma

7.
$$F_f = \mu N$$

8.
$$W = mg$$

9.
$$W = F \times s$$

10.
$$E_p = mgh$$

$$[1. \ E_k = \frac{1}{2}mv^2]$$

11.
$$E_k = \frac{1}{2}mv^2$$

12.
$$p=m \times v$$

FLUIDS

1.
$$P = \rho g h$$

2.
$$W = \rho g V$$

$$RD = \frac{\rho_{subs tan ce}}{\rho_{subs tan ce}} = \frac{m_{subs tan ce}}{\rho_{subs tan ce}}$$

 $P_1V_1 = P_2V_2$

$$S. \quad W_{loss} = \rho_i g V_b$$

$$RDs = \frac{W \text{ in air}}{W \text{ in air} - W \text{ in water}}$$

7
$$RDt = \frac{W \text{ in air} - W \text{ in liquid}}{W \text{ in air} - W \text{ in water}}$$
8 $W - CaV$

8.
$$W = \rho g V$$

$$0 P = F/A$$

$$P = F/A$$

HEAT
$$1. \quad \alpha = \frac{\Delta l}{l_1 \Delta t}$$

$$V_2 = V_1[1 + 3\alpha\Delta]$$

2.
$$V_2 = V_1[1 + 3\alpha\Delta t]$$

3.
$$\beta = 2\alpha$$

4.
$$\gamma = 3\alpha$$

$$5. \quad \frac{V_1}{T_2} = \frac{V_2}{T_2}$$

$$5. \quad \frac{V_1}{T_1} = \frac{V_2}{T_1}$$

$$6. \quad \frac{P_1}{T_1} = \frac{P_2}{T_2}$$

7.
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

8.
$$Q = mc\Delta t$$

9.
$$T = t + 273$$

10.
$$Q = m\ell$$

ELECTRICITY

1.
$$V = IR$$

$$2. \quad R = \frac{r}{A}$$

$$V = IR$$

$$R = \frac{\rho \ell}{A}$$

$$R_{t} = R_{o} (1 + \alpha \Delta t)$$

$$4. \quad emf = I(R+r)$$

$$5. \quad W = VIt$$

$$6. \quad P = VI$$

5.
$$W = VIt$$
6. $P = VI$
7. $P = \frac{W}{t}$

SOUND

$$u = f\lambda$$

CONSTANTS

1.
$$g = 9.8 \, ms^{-2}$$

2.
$$c = 3 \times 10^8 \, ms^{-1}$$

3.
$$e^- = 1,6 \times 10^{-19} C$$

Aluminium =
$$2.2 \times 10^{-5}$$

Brass =
$$1.9 \times 10^{-5}$$

Brick = 9.5×10^{-6}

Concrete =
$$1.2 \times 10^{-5}$$

Copper =
$$1.7 \times 10^{-5}$$

Glass =
$$8.5 \times 10^{-6}$$

Iron =
$$1.2 \times 10^{-5}$$

Pine = 3.4×10^{-7}

Pyrex glass =
$$3.9 \times 10^{-4}$$

 $= 1,1 \times 10^{-5}$

Ice
$$= 3,35 \times 10^{-1}$$

Steam =
$$2,26 \times 10^6$$

5. SPECIFIC HEAT CAPACITIES (in Jkg⁻¹ °C⁻¹)

Glass
$$= 70$$

Steam
$$= 1.800$$

Water
$$= 4200$$

Water =
$$4 \times 200$$

Wood = 1×700

Ice =
$$3,35 \times 10^5$$

7. RELATIVE DENSITIES

= 9

Mercury
$$= 13,6$$

Tin =
$$7,3$$

Water = 1

$$101,3 \text{ kPa} = 76 \text{ cmHg}$$

9. STANDARD TEMPERATURE

 $273 \text{ K} = 0 \,^{\circ}\text{C}$