

SM	
EM	
FM	

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

ELECTRICAL ENGINEERING; INDUSTRIAL ENGINEERING; CHEMICAL ENGINEERING; MECHANICAL ENGINEERING; MINING ENGINEERING; APPLIED BUILDING SCIENCE; MINERAL SURVEYING; CIVIL; CONSTRUCTION; PHYSICAL & EXTRACTION METALLURGY

MODULE:

MATE1A1

ENGINEERING MATHEMATICS V1A

CAMPUS:

DFC

MAIN EXAMINATION

DATE: 09 JUNE 2018 DURATION: 3 HOURS ASSESSOR: T PAEPAE MODERATOR: BP NTSIME	TIME: 12:30 - 15:30 MARKS: 100		
INITIALS AND SURNAME:			
STUDENT NUMBER:			

NUMBER OF PAGES:

17: ENSURE THAT YOUR PAPER IS COMPLETE

NAME OF LECTURER	GROUP	MARK (X)
MR T PAEPAE CHEMICAL ENGINEERING; PHYSICAL & EXTRACTION METALLURGY		
MR MP SELOANE	MECHANICAL & INDUSTRIAL ENGINEERING	
MRS H KOTZE	ELECTRICAL ENGINEERING	
MRS R DURANDT	MINING ENGINEERING & MINERAL SURVEYING	
MR EZ MORAPELI	CIVIL & CONSTRUCTION	

INSTRUCTIONS:

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED USE THE BACK OF EACH PAGE FOR ROUGH WORK

USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE)

REQUIREMENTS:

NON-PROGRAMMABLE CALCULATORS INFORMATION BOOKLET (PROVIDED)

SECTION A [20 MARKS]

INSTRUCTIONS

USE THE TABLE ON PAGE 2 TO MARK THE LETTER (X) CORRESPONDING TO THE CORRECT ANSWER. DO YOUR ROUGH WORK ON THE BLANK PAGES.

1. Which of the following equations represent the graph of an ellipse?

A
$$2y^2 = 6x^2 + 2$$

B
$$\pi x = \pi - 2v^2$$

C
$$2x^2 = \pi - 2$$

$$D x^2 + 4y^2 = 3$$

2. The fifth term from the end in the binomial expansion of $(x-2)^9$ is:

A
$$2016x^5$$

B
$$-2016x^5$$

C
$$-4032 x^4$$

D
$$4032x^4$$

3. If h(x) = x + 9, $g(x) = \cos x$ and $f(x) = x^2$, then $(f \circ g \circ h)(x) =$

A
$$\cos^2(x+9)$$

B
$$cos(x+9)$$

C
$$\cos(x+9)^2$$

D
$$2\cos(x+9)$$

4. The complex number $\ln(4j-e)$ is equal to:

5. If $2 + \log_{\frac{1}{3}}(2x + 1) = 0$, then x is equal to:

A
$$-\frac{2}{9}$$

$$C \qquad -\frac{1}{4}$$

6. The value of $\sec^{-1} 1.28 + \sin^{-1} 0.93$ is equal to:

If the area of a circle sector is 2.88 m² and its arc length is 3.33 m, the radius of the circle (in m) is equal to:

Α 1.73 В 1.925

C 0.578 D 0.865

8. The slope of the tangent to the curve $y = \sin(\tan 2x)$ at the point $(e; \pi)$ is equal to:

Α 2.018 В 1.942

C -0.905 D 0

9. Given that $f(x) = \ln(\cot 2x)$ then f'(x) is:

Α $-2\cos ec2x$

 $-2\sec 2x$ В

 $-4\cos ec4x$

 $-4 \sec 4x$ D

10. $\int \frac{\cos\left(\frac{y}{x}\right)}{x} dy$ is equal to:

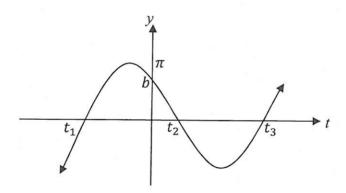
 $\mathsf{B} \qquad -\sin\left(\frac{y}{x}\right) + C$

A $\cos\left(\frac{y}{x}\right) + C$ C $\sin\left(\frac{y}{x}\right) + C$

 $D = -\frac{\cos^2\left(\frac{y}{x}\right)}{2x} + C$

1,	Α	В	С	D	6.	Α	В	С	D
2.	А	В	С	D	7.	А	В	С	D
3.	А	В	С	D	8.	Α	В	С	D
4.	А	В	С	D	9.	Α	В	С	D
5.	А	В	С	D	10.	Α	В	С	D

SECTION B [30 MARKS]


INSTRUCTIONS

GIVE ONLY THE FINAL SIMPLIFIED ANSWER (CORRECT TO THREE DECIMAL PLACES WHERE APPLICABLE) IN THE SPACE PROVIDED

11. Use the binomial theorem to expand $\frac{2}{\sqrt{4-ex}}$ in ascending powers of x as far as the term

12. The diagram shows the wave $y = \pi \sin 2(2t + 1)$. Determine:

12.1 The value of b

12.3

(1)
(*	1)

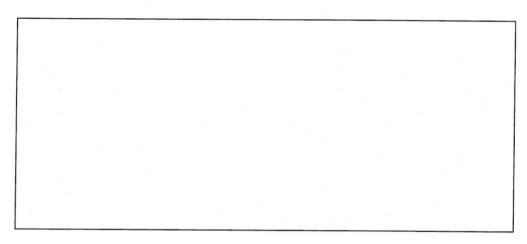
12.2 The angular velocity

	(2)

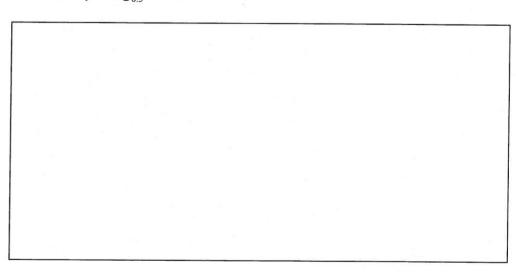
12.4 The values of t_1 , t_2 and t_3

The frequency of the wave

9			(3)


(2)

12	Sketch the graphs	of the following	functions	. Show all intercepts with the axis	
10.	Sketch the graphs	of the following	Tunctions.	. Snow all intercepts with the axis	::


 $13.1 2x^2 = 10 + y^2$

13.2
$$f(y) = \frac{y}{3.7}$$
 (2)

13.3
$$y + \log_{0.5} x^3 = 0$$
 (2)

14. Simplify the following:

14.1
$$\frac{1}{1+\sin x} + \frac{1}{1-\sin x}$$

14.2
$$\frac{7e^{-2j}}{-3+\sqrt{-5}}$$
 (answer in rectangular form)

15. Determine the following derivatives, in their simplest form.

15.1
$$f'(x)$$
 if $f(x) = \sqrt{\sin e^{-x}}$

$$15.2 \quad \frac{dy}{dx} \text{ if } y = \ln \frac{1-x}{1+x}$$

16. Evaluate the following integrals:

$$16.1 \qquad \int \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \, dx$$

$$16.2 \quad \int \frac{\ln(\ln t)}{t \ln t} dt$$

$$16.3 \int_{a}^{\frac{\pi}{4}} \left(\frac{1 - \sin^2 \theta}{\cos^2 \theta} \right) d\theta$$

SECTION C [52 MARKS]

INSTRUCTIONS

SHOW ALL THE STEPS TAKEN AND GIVE YOUR FINAL ANSWER CORRECT TO TWO DECIMAL PLACES WHERE APPLICABLE. SIMPLIFY YOUR ANSWERS FULLY.

17.	Make F	the subject	of the form	nula: <i>A</i> =	$=B\left(C+\frac{1}{2}\right)$	$\left(\frac{D}{n}\right)^{EF}$		(3)
			8				Tarr	
	1180		3 97 10 10	2				
	- <u> </u>						9	29
					z.	-/-	5-15-1 17-15-1	
1						ę:		480
	1					n '8	::	
		2				***************************************	-	
		a 2		9				_
						* *	*	-
	11		- U.S. 188-8			,		
	* 10 g/c		e 2	2" - Ex		\$1 18		- 79
		_ =			. :		-	
		9 54					*	
18			i i	2 0		T STOCKSON IN THE TOTAL	-	2. 8
						-		
						is for our serious		
	-				_			
								· =

18.	Use Crammer's rule to solve the following linear system for y only.	(5)
-----	---	-----

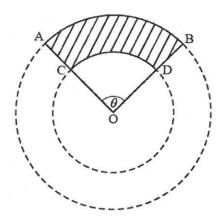
$$\frac{2x}{3} - y + \frac{2z}{3} = 2$$
$$x + 8y + 3z = -31$$
$$\frac{6x}{5} - \frac{4y}{5} + \frac{2z}{5} = -2$$

9 -	
*	
	-
	d 2
a s	
1	
101	

19. In questions 19.1 - 19.3, solve for x:

19.1
$$\begin{vmatrix} x & 1 \\ 3 & -2 \end{vmatrix} = f^{-1}(1) \text{ if } f(x) = \ln(2x - e)$$
 (4)

_
_
_
_
_
_
_
_
_
_
_
_
_


19.2	$4^{2x+1} - (2)(4^{x+1}) + 2 = 4^x$		(5)
		-	-
·			
14			
*			
		24 2	
			1 8.2
		4	
		W	11
	· · · · · · · · · · · · · · · · · · ·		1
		-	

 $3\sin^2 x = \cos^2 x$

19.3	$3\sin^2 x = \cos^2 x$	$\pi \le x \le 2\pi$		(4)
		-		7.0
,			2	
				
	· 	u and		
		8-1	,	
	5.0 j	-		-
			2 × 1	
		,		
			1	
			= 1	
2 7	2		2	

20. The diagram below shows two circles which have the same centre O and radii 16 cm and 10 cm respectively. The two **arcs** AB and CD have the same sector angle $\theta = 85^{\circ}$.

Calculate the area of the shaded region.		(4)
		11
		# H
		a a
	1.0	
	12 (2)	- 20 g
		1000
	3	
	0	
	W	

21.	Use De Moivre's	theorem	to evaluate	$\left[\frac{e^{0.2j}(j-5)^5}{[4(\cos 3 - j\sin 3)]^4}\right]$	and	give	the	final	answer
	rectangular form)								(5)
-		0					I,		
						W.			
	-								
				-					
	e								
			-						
			-				=	34 T	
						-			
			-						
					<u> </u>	- 10			
	10.7								
		3					īV.		
	.								
						15		E	
								.,	
					(1)				-

22.	Determ	ine the following, giving your answer in its simplest form:		
	22.1	$\frac{d^2y}{dx^2} \text{ if } y = e^{\cos^2 x}$		(4)
	11			
	5 N			-
	18			-
				-
				_%
	95		е.	
			11	_
				(1
	22.2	Given $\lim_{x\to 0} \frac{\sin x}{x} = 1$, evaluate: $\lim_{x\to 0} x \cot x$		(3)
1	8			
	2			
-				

23.

(5)

		-				
			180			
	11 1					

Sketch the graph of the function below. (Show all intercepts and critical points).

 $f(x) = -x^3 + 6x^2 - 9x$

24.	Integrate	11 C	11
14	iniegrate	the to	IIUM/INA.
	micograco	LI IO IO	IIO VVIII IG.

$$24.1 \qquad \int \sqrt{(4x^2 - 12x + 9)^3} \, dx \tag{3}$$

»

	$rac{2^{\tan 2x}}{}$	
24.2	J.,	(2)
	$\int \frac{1}{\cos^2 2x} dx$	(2)

		onds.					(5)
	-						
	-			*			
			11				
			-				
		-			į.		
-				,			
			40		200		
		= 4					
		2					
			17 ⁸		2 5		
				3			
			* ***				
			-			-	
	= 1		2				27
				4			:
	155		⁹ 50				- Colores
-							

Use this space if you want to redo any question(s). Please indicate clearly at the relevant question(s) that the solution is on this page.					