

FACULTY OF SCIENCE

	Examiner	Moderator
Paper 1 30 Marks		
Paper 2		
70 Marks		
EM/100		

(PAPER 2)

	Examiner	Moderator
SM		
EM		
FM		

	DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS	
	NATIONAL DIPLOMA IN ENGINEERING: ELECTRICAL ENGINEERING	
MODULE:	ENGINEERING MATHEMATICS 3 (MAT3AW3)	
CAMPUS:	DFC	
ASSESSMEN	NT: JUNE EXAMINATION 2018	

DATE: 31 MAY 2018	SESSION: 1	2:30-15:30
ASSESSOR:	DR SM SIM	IELANE
MODERATOR:	DR T MASE	BE
DURATION: 180 MINUTES	MARKS:	100
INITIALS AND SURNAME:		2
STUDENT NUMBER:		
CONTACT NUMBER:		
NUMBER OF PACES		

NUMBER OF PAGES: 17 PAGES (INCLUDING COVER PAGE)

INSTRUCTIONS: WRITE YOUR STUDENT NUMBER AND PARTICULARS IN THE SPACE PROVIDED.

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED.

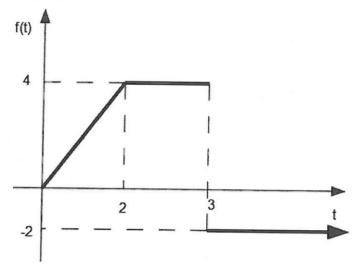
USE ONLY A PEN FOR WRITING AND DRAWING (BLACK OR BLUE).

THIS EXAM IS ASSESSING SKILLS FOR SOLVING WELL-DEFINED ENGINEERING PROBLEMS AS OUTLINED IN ELO 1.

REQUIREMENTS: INFORMATION BOOKLET (AS ISSUED TO YOU IN THE EXAM)

Determine	the	fol	lowing
-0.01111110	UIC	101	OWILIG

a. $L\{(2t-5)H(t-2)\}$	(3)


b.	$L^{-1}\left\{\frac{2p+5}{p^2+2p+10}\right\}$	(4)
	$(p^2+2p+10)$	(4)

,	-		
		-	
	*		
	-		

c. $\frac{1}{D^2+D-5}\{3+2t^2\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)
$d. \frac{1}{D^2 + 4D} \left\{ \frac{\sin t}{e^{2t}} \right\}$	(4)

e	$\int_{-\pi}^{0} \sin nx \ dx$			(4)
	· · · · · · · · · · · · · · · · · · ·			
				¥
		7		
				<u> </u>
	- 	21		
	4			
				,
	W/// 80% - 14 (8 - 14 / 14 / 14 / 14 / 14 / 14 / 14 / 14	27		
	4			
	1			
	1			
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)
f.	Is the function $g(t) = \begin{cases} 2t, \\ t^2, \end{cases}$	$-2 \le t < 0$ $0 \le t < 2$	odd or even? Prove.	(2)

Given the function f(t) as

a. Express the function f(t) in unit step functions.

(2)

a e		14	
			73.
, , , , , , , , , , , , , , , , , , , ,			

b. Express the function f(t) in found above in Heaviside form. Fully simplify. (2)

c. Compute the Laplace transforms of $f(t)$.	(4)
	14
	9

Determine the unique solutions of the following differential equations by using the **Laplace Transforms**, subject to the indicated initial conditions.

a.
$$y''(t) + 4y(t) = \begin{cases} 0, & 0 \le t < 2 \\ 6, & t \ge 2 \end{cases}$$
 subject to $y(0) = 1$ and $y'(0) = 3$. (8)

1	
-	
-	
-	
-	
-	
-	
F	
-	
_	
-	
L	
-	
L	
_	
_	
_	

(8)

Question 4

a. The mathematical model of a hypothetical system is described by the following differential equation

$$y'' + 4y' + 3y = 2t - 1.$$

Using **Laplace Transforms**, determine the motion y(t) of this system if the initial displacement is y(0) = 0 and the initial velocity applied to the system is y'(0) = 0. Discuss the motion as $t \to \infty$.

		* 15
		-
-		
-		
	·	
-		
_		

 Use D-Operator Methods to solve the differential equation for y(initial conditions to determine the particular solution. 	ty and asc the given
	~

Use **D-Operator Methods** to solve

a. $(D^2 + 2D - 24)x = e^t(t^2 - 2)$	

b. $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^t \sin t$	(7)
	11

c. Solve for x only

$$\frac{dx}{dt} + y - 3x + 1 = 0$$

$$\frac{dy}{dt} - y = 4e^t$$
(10)

1	
-	

MAT3AW3

MAT3AW3	EXAM (PAPER 2)	31 MAY 2018	
·			
			
-			
	-		
		2.7	

a.	Find a	Fourier	series	for the	following	function
----	--------	---------	--------	---------	-----------	----------

$f(x) = \begin{cases} 2x \\ 0 \end{cases}$	$ \begin{array}{c} -4 \le x < 0 \\ 0 \le x < 4 \end{array} $	f(x) = f(x+8)	(13)

	MMC 9. 10.0		
	2		
-			
\$ 11			
		2	

MAT3AW3	EXAM (PAPER 2)	31 MAY 2018
		·
-		
		·
		-
-		

b. The table below defines a discrete function f(x) of period 360°. Determine the Fourier series of f(x) up to the second harmonic. (Work to 2 decimal places) (5)

x ^o	0	60	120	180	240	300	-
f(x)	0	11,5	4	0	-11,5	-4	_

	End of assessment – Total 102 marks available
2	
_	
_	
_	
L	
L	
Г	

Use this space if you want to redo any question(s). Please indicate clearly at the relevant question(s) that the solution is on this page.					