

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED PHYSICS AND ENGINEERING MATHEMATICS

NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY DIPLOMA IN ANALYTICAL CHEMISTRY (4 YEARS)

MODULE

MAT2WA2/MAT1YE3

ENGINEERING MATHEMATICS 2A

CAMPUS

DFC

ANSWER CORRECTLY.

JULY SUPPLEMENTARY EXAMINATION

				C. E. C. WILLY		
DATE 20/07/2018					SESSION	08:00 - 10:00
ASSESSOR					MRTEM	IOGOROSI
INTERNAL MODE	RATOR				MR IK LE	ETLHAGE
DURATION 2 H	IOURS				MARKS	70
SURNAME AND IN	IITIALS:					
STUDENT NUMBE	R:				S	-
CONTACT NO:	-		*			
NUMBER OF PAGE	ES: 19				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
REQUIREMENTS :				IFIC CALCULATO	PR	
. :	ENSURE USE THE INDICATE	THAT YOU BLANK PA IT AS SUC	R PAPER HA GES AT THE CH.	S ALL THE PRINT BACK TO DO RO	OUGH WOR	

: IF YOU RUN OUT OF SPACE FOR WRITING, USE THE BACK OF THE PREVIOUS PAGE TO COMPLETE YOUR ANSWER. NUMBER YOUR

: USE ONLY BLUE OR BLACK INK TO WRITE. NO PENCIL

QUESTION 1	[14]

Determine the indicated derivative. Write the answer in its simplest form or, where applicable, give the answer correct to two decimal places.

1.1	$f'(x)$ if $f(x) = \frac{x}{\sqrt{1 - 4x^2}}$	(3)
	VI TA	

			*		
					7
9					
			71.	-	
					10
			79		
	в ====================================	ū.			
		2			
			, , , , , ,	9	
				81	
		21			
				1-4-	
		1			
				18	
					

1.2	$\frac{dy}{dx}$ if $y = (x+1)\sqrt{x^2+2x} - \cosh^{-1}(x+1)$,	(4)
		·
		4.5.
		* *
-		
-		
		-
uc		

1.3 Find $\frac{d^2y}{dx^2}$ in its simplest form if $y = \ln(x^3) + (\ln x)^3$	(3)
	=

$1.4 \frac{d^2 y}{dx^2} \text{ if } y = \sqrt{x} \sin \sqrt{x}$	(4)
	Heller 19
•	

QUESTION 2	[5]
Use implicit differentiation to determine	$\frac{d^2y}{dx^2}$ at the point (2;-1), if $x^2 + 4xy + y^2 + 3 = 0$.

QUESTION 3 [5]
Use logarithmic differentiation to find $\frac{dy}{dx}$ if $y = \frac{e^{x^2} \cos e^x}{\sqrt{\sin^{-1} x}}$. Write the answer in its
simplest form.

QUESTION 4 [5]

The hypocycloid of four cusps is defined parametrically by $x=a\cos^3\theta$, $y=a\sin^3\theta$. It is shown below. Find $\frac{d^2y}{dx^2}\Big|_{\theta=\frac{\pi}{4}}$ if a=2.

			5,600 - 100-	
			Alberta de la	
	17			

	- 1987 O.O. T.V 199			
***	T4			
*				-
		5 88		
		4.5		
				1
1159 Militar				

QUESTION 5		[15
5.1 If $z = \frac{y^2}{(x^2 + y^2)} - \ln(x^2 + y^2)$ determine	$\frac{\partial^2 z}{\partial y \partial x}$ in its simplest form.	(5)
		,
		21
		-
	* *	
1	1	

5.2 A surveyor wants to calculate the area of a triangular field. She measures two adjacent sides and finds that the one side has length x = 50m and the other side has length y = 75m. Each of these measurements has a possible error of 0.2m. She measures the angle between the two sides and finds that it is $\theta = 30^{\circ}$, with a possible error of 0.23° . Find the maximum error in the calculation of the area, A, of the field. The area is given by $A = \frac{1}{2}xy\sin\theta$. (5)

		388		
	-			
	e e		9	
27				
,				

5.3 The paraboloid with equation $z = 12 - 4x^2 - y^2$, find the rate of change in z in the

	2		
	-	-	
		-	<u> </u>
	0		2 6

	<u> </u>		
i i			4
			_

QUESTION 6	[29]
Evaluate the following integrals. Show all the steps of integration.	
$6.1 \int \cos ec^6 x dx$	(4)

$5.2 \int \frac{x+1}{9x^2+4} dx$	(3)
	#
	220
	(4)
	,
	-
	-

$6.3 \int_{0}^{\frac{\pi}{6}} \sqrt{1 + \cos 2\theta} d\theta$	(4)
0	<u> </u>
$3.4 \int 3^{\log_3 \frac{x^2}{\sqrt{x^6 - 1}}} dx$	(3)

$\int \frac{1}{5 + e^{5t}} dt$	(3
	7

$\int_{0}^{\infty} e^{\sqrt{1+\frac{1}{x}}}$	
$6.6 \int \frac{e^{\sqrt{1+\frac{1}{x}}}}{\sqrt{x^4 + x^3}} dx$	(4)
	-
	,
	=

6.7 $\int \frac{3}{\sqrt{x^2 + 1} \cdot \left(1 + \left[\sinh^{-1} x\right]^2\right)} dx$	(4)
	5
	0

6.8	$\int \frac{\sec^2 2x}{\sqrt{1 - 16\tan^2 2x}} dx$	(4)
<u> </u>		
		-
-		

MARKS AVAILABLE : 73
TOTAL MARKS : 70

	E TO RE-DO					
			-	3.000		
			2			
	- S					

					·	
		"	12/			
		11		×	- X	
_						
			170			-
70 70 70 70 70 70 70 70 70 70 70 70 70 7			-			9 183
U 0 0 0						
		D-1				
11			10			
			v			***
		72				