

FACULTY OF SCIENCE

DEPARTMENT OF FOOD TECHNOLOGY NATIONAL DIPLOMA

MODULE

FOOD PROCESS ENGINEERING 1

FTN2AE1

CAMPUS DFC

EXAM

07 July 2018

DATE:

SESSION 14:00

ASSESSOR

DR J KABUBA

INTERNAL MODERATOR

MS N BALOYI

DURATION 3 HOURS

MARKS 100

NUMBER OF PAGES: 5 PAGES

ANNEXURES: 4 PAGES

INSTRUCTIONS: ANSWER ALL THE QUESTIONS.

QUESTION 1

Water in a tank flows through an outlet 25 m below the water level into a 0.15 m diameter horizontal pipe 30 m long, with a 90° elbow at the end leading to a vertical pipe of the same diameter 15 m long. This is connected to a second 90° elbow which leads to a horizontal pipe of the same diameter, 60 m long, containing a fully open globe valve and discharging to atmosphere 10m below the level of the water in the tank. Taking e/d = 0.01 and the viscosity of water as 1 mN s/m², what is the initial rate of discharge?

(20)

QUESTION 2

The dimensionless Grashof number (Gr) arises in the study of natural convection heat flow. If the number is given as

$$\frac{D^3 \rho^2 \beta g \Delta T}{\mu^2}$$

Verify the dimensions of β the coefficient of expansion of the fluid.

(17)

QUESTION 3

Orange juice concentrate is made by concentrating single-strength juice to 65% solids followed by dilution of the concentrate to 45% solids using single-strength juice.

Draw a diagram for the system and set up mass balances for the whole system and for as many subsystems as possible.

Consider a hypothetical proportionator that separates the original juice (S) to that which is fed to the evaporator (F) and that (A) which is used to dilute the 65% concentrate. Also, introduce a blender to indicate that part of the process where the 65% concentrate (C_{65}) and the single-strength juice are mixed to produce the 45% concentrate (C_{45}).

(19)

FOOD PROCESS ENGINEERING: FTN2AE1

QUESTION 4

Calculate the specific heat of a formulated food product that contains 15% protein, 20% starch, 1% fiber, 0.5% ash, 20% fat, and 43.5% water at 25°C.

```
Protein: C_{\rm gp} = 2008.2 + 1208.9 \times 10^{-3} \ T - 1312.9 \times 10^{-6} \ T^2 Fat: C_{\rm pf} = 1984.2 + 1473.3 \times 10^{-3} \ T - 4800.8 \times 10^{-6} \ T^2 Carbohydrate: C_{\rm pc} = 1548.8 + 1962.5 \times 10^{-5} \ T - 5939.9 \times 10^{-6} \ T^2 Fiber: C_{\rm ph} = 1845.9 + 1930.6 \times 10^{-3} \ T - 4650.9 \times 10^{-6} \ T^2 Ash: C_{\rm ph} = 1092.6 + 1889.6 \times 10^{-3} \ T - 3681.7 \times 10^{-6} \ T^2 Water above freezing: C_{\rm wif} = 4176.2 - 9.0864 \times 10^{-5} \ T + 5473.1 \times 10^{-6} \ T^2
```

(12)

QUESTION 5

Calculate the pressure drop along 170 m of 5 cm diameter horizontal steel pipe through which olive oil at 20°C is flowing at the rate of 0.1 m³ min⁻¹.

(20)

QUESTION 6

The wall of a bakery oven is built of insulating brick 10 cm thick and thermal conductivity 0.22 J m⁻¹ s⁻¹ °C⁻¹. Steel reinforcing members penetrate the brick, and their total area of cross-section represents 1% of the inside wall area of the oven. If the thermal conductivity of the steel is 45 J m⁻¹ s⁻¹ °C⁻¹. Calculate:

- 6.1 The relative proportions of the total heat transferred through the wall by the brick and by the steel and (7)
- 6.2 The heat loss for each m² of oven wall if the inner side of the wall is at 230°C and the outer side is at 25°C. (5)

TOTAL 100

RELATIVE ROUGHNESS FACTORS FOR PIPES

Material	Roughness factor (ϵ)	Material	Roughness factor (ϵ)
Riveted steel	0.001- 0.01	Galvanized iron	0.0002
Concrete	0.0003 - 0.003	Asphalted cast iron	0.001
Wood staves	0.0002 - 0.003	Commercial steel	0.00005
Cast iron	0.0003	Drawn tubing	Smooth

FRICTION LOSS FACTORS IN FITTINGS

K Valves, fully open: 0.13 gate globe 6.0 angle 3.0 Elbows: 90° standard 0.74 medium sweep 0.5 0.25 long radius square 1.5 Tee, used as elbow 1.5 0.5 Tee, straight through Entrance, large tank to pipe:

APPENDICES APPENDIX 1

SYMBOLS, UNITS AND DIMENSIONS

а	acceleration m s ⁻² ; [L] [t] ⁻² thickness m; [L]
a _w	water activity; dimensionless
Α	area m²; [L]²
b	height of liquid in a centrifuge m; [L]
(Bi)	Biot number h _s L/k;h _s D/k; dimensionless
С	specific heat J kg ⁻¹ °C ⁻¹ ; [F] [L] [M] ⁻¹ [T] ⁻¹ , c_p specific heat at constant pressure, c_s humid heat
С	heat conductance J m ⁻² s ⁻¹ °C ⁻¹ ; [F] [L] ⁻¹ [t] ⁻¹ [T] ⁻¹ coefficients - discharge, drag, geometric; constant; dimensionless
d	diameter m; [L]
D	diameter m; [L] diffusivity m ² s ⁻¹ ; [L] ² [t] ⁻¹
e	small temperature difference °C; [T] roughness factor m; [L]
E	energy J; [F] [L] E_c pump energy, E_f friction energy, E_h heat energy, E_i work index in grinding, E_k kinetic energy, E_p potential energy, E_r pressure energy
f	friction factor; dimensionless
f_{c}	crushing strength kg m ⁻¹ s ⁻² ; [M] [L] ⁻¹ [t] ⁻²
F	force N, kg m s ⁻² ; [F], [M][L][T] ⁻² F_c centrifugal force, F_d drag force, F_c external force, F_f friction force, F_g gravitational force; ratio of liquid to solid in thickener feed; dimensionless
	time to sterilize at 121°C min; [t]
(Fo)	Fourier number (kt/cpL2); dimensionless
(Fr)	Froude number (DN^2/g) ; dimensionless
F(D) g G	Cumulative particle size distribution, $F'(D)$ particle size distribution; dimensionless acceleration due to gravity m s ⁻² ; [L] [t] ⁻² mass rate of flow kg m ⁻² s ⁻¹ ; [M] [L] ⁻² [t] ⁻¹
(Gr)	Grashof number $(D^3\rho^2\beta g\Delta t/\mu^2)$; dimensionless
h	heat transfer coefficient J m ⁻² s ⁻¹ °C ⁻¹ ; [F] [L] ⁻¹ [t] ⁻¹ [t] ⁻¹ h _c convection, h _h condensing vapours on horizontal surfaces, h _r radiation, h _s surface, h _v condensing vapours on vertical surface
4	enthalpy J; [F] [L]
	Henry's Law constant atm mole fraction ⁻¹ kPa mole fraction ⁻¹ ; [F] [L] ⁻²
(constant
	constant of proportionality
	friction loss factor; dimensionless
	thermal conductivity J m ⁻¹ s ⁻¹ °C ⁻¹ ; [F] [t] ⁻¹ [T] ⁻¹
	mass-transfer coefficient

```
context
 K
             constant, K. K. etc.
             mass-transfer coefficient kg m<sup>-2</sup> h<sup>-1</sup>; [M] [L]<sup>-2</sup> [t]<sup>-1</sup>
             K<sub>x</sub> crystal interface
 K_{K}
             Kick's constant m<sup>3</sup> kg<sup>-1</sup>; [L]<sup>3</sup> [M]<sup>-1</sup>
 K_{R}
             Rittinger's constant m<sup>4</sup> kg<sup>-1</sup>; [L]<sup>4</sup> [M]<sup>-1</sup>
 K_{\rm s}
             rate constant for crystal surface reactions m s-1; [L] [t]-1
 K_d
             rate constant for crystal surface reactions m s<sup>-1</sup>; [L] [t]<sup>-1</sup>
 L
             flow rate of heavy phase kg h-1; [M] [t]-1
            half thickness of slab for Fourier and Biot numbers m; [L]
            length m; [L]
            ratio of liquid to solid in thickener underflow;
Lc
            dimensionless thickness of filter cake m; [L]
(Le)
            Lewis number (h<sub>c</sub>/k'<sub>g</sub><sup>c</sup><sub>p</sub>)or (h<sub>c</sub>/k<sub>g</sub><sup>c</sup><sub>s</sub>); dimensionless
m
            mass kg; [M]
            number, general
(M)
            mixing index, dimensionless
M
            molecular weight; dimensionless
            molal concentration (kg) moles m<sup>-3</sup>; [M] [L]<sup>-3</sup>
n
            number, general
N
            number of particles in sample;
            rotational frequency, revolutions/minute or s; [t]-1
(Nu)
            Nusselt number (hc D/k); dimensionless
p
            partial pressure Pa; [F] [L]-2
            p_a partial pressure of vapour in air, p_s saturation partial pressure
            ratio in mixing and grinding; dimensionless
P
            constant in freezing formula; dimensionless; power N ms-1; [F] [L] [t]-1
            pressure Pa; [F] [L]-2
P_{\mathsf{a}}
            pressure on surface Pa; [F] [L]-2
(Po)
            Power number (P/D^5N^3\rho); dimensionless
(Pr)
            Prandtl number (c_p\mu/k); dimensionless
9
            heat flow rate J s<sup>-1</sup>; [F] [L] [t]<sup>-1</sup>
            fluid flow rate m3 s-1; [L]3 [t]-1
            factor in particle geometry in grinding and mixing; dimensionless
```

 $k_{\rm g}$ gas mass-transfer coefficient, $k_{\rm g}$ mass-transfer coefficient based on humidity difference, $k_{\rm l}$ liquid mass transfer coefficient; units and dimensions depend on

```
Q
             quantity of heat J; [F] [L]
             radius m; [L]
             r<sub>n</sub> neutral radius in centrifuge
             specific resistance of filter cake kg m<sup>-1</sup>; r' specific resistance of filter cake under 1
            Atm pressure [M] [L]-1
 R
             constant in freezing formulae; dimensionless
            Universal gas constant 8.314 kJ mole<sup>-1</sup> K<sup>-1</sup>; [L]<sup>2</sup> [t]<sup>-2</sup> [T]<sup>-1</sup>; 0.08206 m<sup>3</sup> atm mole<sup>-1</sup> K<sup>-1</sup>
 (Re)
            Reynolds number (Dv\rho/\mu) and (D^2N\rho/\mu); dimensionless
 s
            compressibility of filter cake; dimensionless
            distance m; [L]
            standard deviation of sample compositions from the mean in mixing; dimensionless
So, Sr
            initial and random values of s in mixing; dimensionless
 (Sc)
            Schmidt number (\mu/\rho D); dimensionless
(Sh)
            Sherwood number (K'd/D); dimensionless
SG
            specific gravity; dimensionless
t
            time s, h, min; [t]
            t_{\rm f}, freezing time h
 T
            temperature °C or T K; [T]
            T_{av} mean temperature, T_a air, T_s surface, T_c centre
            T<sub>m</sub> mean temperature in radiation
U
            overall heat-transfer coefficient J m<sup>-2</sup> s<sup>-1</sup> °C<sup>-1</sup>; [F] [L]<sup>-1</sup> [t]<sup>-1</sup> [T]<sup>-1</sup>
V
            velocity m s<sup>-1</sup>; [L] [t]<sup>-1</sup>
V
            flow rate of light phase kg h<sup>-1</sup>; [M] [t]<sup>-1</sup>
            volume m3; [L]3
            volumetric flow rate m3 s-1; [L]3 [t]-1
            solid content per unit volume kg m<sup>-3</sup>; [M] [L]<sup>-3</sup>
            weight kg; [F]
W
            work Nm; [F] [L]
X
            concentration in heavy phase kg m<sup>-3</sup>; [M] [L]<sup>-3</sup>
            distance m; [L]
            fraction, mole or weight, dimensionless
X
            moisture content; dimensionless
           X<sub>c</sub> critical moisture content, X<sub>f</sub> final moisture content, X<sub>o</sub> initial moisture content;
            thickness of slab m; [L]
У
            concentration in light phase kg m<sup>-3</sup>; [M] [L]<sup>-3</sup>
```

```
fraction, mole or weight, dimensionless
Y
           humidity, absolute; humidity difference; dimensionless
Z
           height m; [L]
           temperature difference for 10-fold change in thermal death time °C, [T]
Ζ
           depth, height of fluid m; [L]
           absorbtivity; dimensionless
α
           coefficient of thermal expansion m m<sup>-1</sup> °C<sup>-1</sup>; [T]<sup>-1</sup>
β
           \beta_1, \beta_2 length ratios in freezing formula; dimensionless
δ
           thickness of layer for diffusion m; [L]
Δ
           difference
           \Delta t_{\rm m} logarithmic mean temperature difference °C; [T]
           emissivity; dimensionless
3
           roughness factor; dimensionless
           efficiency of coupling of freezing medium to frozen foodstuff
η
λ
           latent heat J kg<sup>-1</sup>; [F] [M]<sup>-1</sup>
           shape factor for particles; dimensionless
           viscosity kg s<sup>-1</sup> m<sup>-1</sup>; Pa s ; [M] [t]<sup>-1</sup> [L]<sup>-1</sup> ; [F][t][L]<sup>-2</sup>
μ
           ratio of circumference to diameter of circle, 3.1416
π
           total pressure Pa; [M] [L]-1[t]-2
П
           osmotic pressure kPa; [F] [L]-2
```

Stefan-Boltzman constant, 5,73 x10⁻⁸ kg m⁻²s⁻¹°C⁻⁴ ; [M] [t]⁻³ [T]⁻⁴ or [F] [L]⁻¹ [t]⁻¹

density kg m⁻³; [M] [L]⁻³

shear stress in a fluid Pa; [F] [L]-2

fin efficiency; dimensionless angular velocity radians s⁻¹, [t]⁻¹

ρ

σ

τ φ

ω

APPENDICES APPENDIX 2

UNITS AND CONVERSION FACTORS

Length	1 inch	= 0.0254 m
	1 ft	= 0.3048 m
Area	1 ft ²	$= 0.0929 m^2$
Volume	1 ft ³	$= 0.0283 \text{ m}^3$
	1 gal Imp	$= 0.004546 \text{ m}^3$
	1 gal US	$= 0.003785 \text{ m}^{3 = 3.791}$
	1 litre	$= 0.001 \text{ m}^3$
Mass	1 lb	= 0.4536 kg
	1 mole	molecular weight in kg
Density	1 lb/ft ³	= 16.01 kg m ⁻³
Velocity	1 ft/sec	$= 0.3048 \text{ m s}^{-1}$
Pressure	1 lb/m ²	= 6894 Pa
	1 torr	= 133.3 Pa
	1 atm	= 1.013 x 10 ⁵ Pa
		= 760 mm Hg
Force	1 Newton	$= 1 \text{ kg m s}^{-2}$
Viscosity	1 cP	$= 0.001 \text{ N s m}^{-2} = 0.001 \text{ Pa s}$
	1 lb/ft sec	$= 1.49 \text{ N s m}^{-2} = 1.49 \text{ kg m-1 s-2}$
Energy	1 Btu	= 1055 J
	1 cal	= 4.186 J
Power	1 kW	$= 1 \text{ kJ s}^{-1}$
	1 horsepower	$= 745.7 \text{ W} = 745.7 \text{ J s}^{-1}$
	1 ton refrigeration	= 3.519 kW
Heat-transfer coefficient	1 Btu ft ⁻² h ⁻¹ °F ⁻¹	$= 5.678 \text{ J m}^{-2} \text{ s}^{-1} ^{\circ}\text{C}$
Thermal conductivity	1 Btu ft ⁻¹ h ⁻¹ °F ⁻¹	= $1.731 \mathrm{J}\mathrm{m}^{-1}\mathrm{s}^{-1}^{\circ}\mathrm{C}^{-1}$
Constants	π	3.1416
	σ	$5.73 \times 10^{-8} \text{ J m}^{-2s-1} \text{K}^{-4}$
	е	2.7183
	R	8.314 kJ mole ⁻¹ K ⁻¹ or 0.08206 m ^{3 atm} mole ^{-1 K-1}
45.55		or 0.08206 m ^{3 atm} mole ^{-1 K-1}
(M) Mega = 10 ⁶ , (k) kilo = 10 ³ ,		
(K) KIIO - 10,		

(h) kilo = 10⁻³, (m) milli = 10^{-3} , (μ) micro = 10^{-6} Temperature unit (°F) = 5/9 (°C) = 5/9 (K)

Transient heat conduction
Temperatures at the centre of sphere, slab, and cylinder: adapted from Henderson and Perry, Agricultural Process Engineering, 1955