

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRY

B. ENG. TECH. IN CHEMICAL ENGINEERING B. ENG. TECH. IN ELECTRICAL ENGINEERING

MODULE

CETE1A1

ENGINEERING CHEMISTRY (CHEMICAL/ELECTRICAL) 1A

CAMPUS

DFC

MAIN EXAMINATION

DATE: 04/06/2018

SESSION: 12:30 - 15:30

ASSESSORS:

DR D NKOSI DR C ZVINOWANDA

INTERNAL MODERATOR:

MR P MONAMA

DURATION: 3 HOURS

MARKS: 145

NUMBER OF PAGES: 10 PAGES, INCLUDING A DATA SHEET AND PERIODIC TABLE.

INSTRUCTIONS: ANSWER SECTION A ON THE MULTIPLECHOICE ANSWER SHEET.

ANSWER SECTION B IN THE TWO ANSWER BOOKLETS PROVIDED:

ANSWER QUESTION 1 TO 4 IN ANSWER BOOKLET 1 AND QUESTION 5 AND 6 IN ANSWER BOOKLET 2.

CALCULATORS ARE PERMITTED (ONLY ONE PER STUDENT).

GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

REQUIREMENTS:

SECTION A:

MULTIPLE CHOICE ANSWER SHEET

SECTION B:

2 ANSWER BOOKLETS:

SECTION A

ANSWER THIS SECTION ON THE MULTIPLE-CHOICE ANSWER SHEET

- 1. Which one of the following statements is not correct about matter?
 - A. Chemistry is the study of the properties and behavior of atoms in matter only.
 - B. Matter is anything that has mass and takes up space.
 - C. Atoms are the building blocks of matter.
 - D. Each element is made of a unique kind of atom.
 - E. A compound is made of two or more different kinds of elements.
- 2. Which one of the following statements is correct about some of the properties of matter?
 - A. Physical Properties can *only* be observed when a substance is changed into another substance
 - B. Intensive Properties depend upon the amount of the substance present.
 - C Chemical Properties can be observed without changing a substance into another substance.
 - D. Another name for a homogeneous mixture is solution.
 - E. Extensive Properties are independent of the amount of the substance that is present.
- 3. Determine the mass-percentage of carbon in ethane (C_2H_6) .
 - A. 69.75%
 - B. 85.25%
 - C. 68.85%
 - D. 79.85%
 - E. 90.35%
- 4. How many protons (p), neutrons (n), and electrons (e⁻) are in an atom of strontium-90?
 - A. 90p; 38e-; 38n
 - B. 38p, 90e⁻; 90n
 - C. 38p; 38e-; 52n
 - D. 52p, 52e-; 38n
 - E. 38p, 38e⁻; 38n
- 5. Naturally occurring chlorine is 75.78% ³⁵Cl (atomic mass 34.969 amu) and 24.22% ³⁷Cl (atomic mass 36.966 amu). Calculate the atomic weight of chlorine.
 - A. 35.550
 - B. 35.453
 - C. 35.968
 - D. 34.451
 - E. 35.620

- 6. Which one of the following statements is not correct about ionic compounds.
 - A. Ionic compounds are generally formed between metals and nonmetals.
 - B. Electrons are transferred from the metal to the nonmetal.
 - C. The oppositely charged ions attract each other.
 - D. Only empirical formulas are written.
 - E. Electrons are shared by the atoms involve in making ionic compound.
- 7. Which of the ions formed by elements in Period number 2 has the largest ionic radius?
 - A. O²⁻
 - B. Li⁺
 - C. Be²⁺
 - D. B³⁺
 - E. C4+
- 8. Which one of the following statements is correct?
 - A. Nitrate salts are insoluble in water
 - B. Compounds formed between metals and non-metals tend to be covalent
 - C. Substances containing only non-metals are ionic
 - D. Most non-metal oxides are basic
 - E. Metal oxides tend to be basic
- 9. The outermost electron in gallium (Ga) is found in 4p¹. Which one of the following sets of quantum numbers correctly describe this electron?
 - A. n = 4; l = 0; $m_l = -1, 0, +1$; $m_s = +1/2$
 - B. n = 4; l = 2; $m_l = -1, 0, +1$; $m_s = +1/2$
 - C. n = 4; l = 1; $m_l = -1, 0, +1$; $m_s = +1/2$
 - D. n = 2; l = 2; $m_l = -2, -1, 0, +1, +2$; $m_s = +1/2$
 - E. n = 2; l = 1; $m_l = -1, 0, +1$; $m_s = +1/2$
- 10. Which one of the following equations illustrate correctly the third ionisation energy of aluminium (AI)
 - A. $AI(g) \rightarrow AI^{+}(g) + e^{-}$
 - B. $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-}$
 - C. $AI^{+}(g) \rightarrow AI^{2+}(g) + e^{-}$
 - D. $AI(g) \to AI^{3+}(g) + 3e^{-}$
 - E. $Al^{+}(g) \rightarrow Al^{3+}(g) + 2e^{-}$
- 11. The formation of molecular geometry can be explained using hybridisation and formation of degenerate orbitals. Which one of the following hybrid orbitals are associated with octahedral shape?
 - A. sp
 - B. sp²
 - C. sp³

S

- D. p
- E.

- 12. Which one of the following statements is not correct about lattice energy?
 - A. The energy required to completely separate a mole of a solid ionic compound into its gaseous ions.
 - B. Lattice energy is the energy change accompanying the addition of an electron to a gaseous atom.
 - C. Lattice energy increases with decreasing size of ions
 - D. Lattice energy increases with the charge on the ions.
 - E. The energy associated with electrostatic interactions is governed by Coulomb's law.
- 13. The following statements describe some of the characteristics of gases except which one?
 - A. Expand to fill their containers
 - B. Are highly compressible
 - C. Have extremely low densities
 - Gases consist of large numbers of molecules that are in continuous, random motion
 - E. Attractive and repulsive forces between gas molecules are significant
- 14. What is the oxidation number of iron (Fe) in the oxyanion ferrate (FeO₄ 3 -)?
 - A. +5
 - B. +3
 - C. –3
 - D. +6
 - E. +4
- 15. Which one of the following of the statements does not correctly describe what is happening in the equation: $Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(q)$
 - A. Zinc is acting as an oxidising agent
 - B. Hydrogen ion is an oxidising agent
 - C. Zinc is oxidised
 - D. Hydrogen ion is reduced
 - E. Zinc is a reducing agent
- 16 The equilibrium constant for the gas phase reaction

$$NH_3(g) \rightleftharpoons N_2(g) + 3 H_2(g)$$

is $K_c = 230$ at 300 °C. At equilibrium, _____.

- A. products predominate
- B. reactants predominate
- C. roughly equal amounts of products and reactants are present
- D. only products are present
- E. only reactants are present

17. The value of K_c for the equilibrium

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

is 794 at 25 °C. At this temperature, what is the value of $\,K_{_{\rm c}}$ for the equilibrium below?

$$HI(g) \rightleftharpoons \frac{1}{2}H_{2}(g) + \frac{1}{2}I_{2}(g)$$

- A. 1588
- B. 28
- C. 397
- D. 0.035
- E. 0.0013
- 18. Which one of the following will change the value of an equilibrium constant?
 - A. adding other substances that do not react with any of the species involved in the equilibrium
 - B. varying the initial concentrations of reactants
 - C. varying the initial concentrations of products
 - D. changing the volume of the reaction vessel
 - E. changing temperature
- 19. The reaction below is exothermic:

$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

Le Chatelier's Principle predicts that _____will result in an increase in the number of moles of $SO_3(g)$ in the reaction container.

- A. decreasing the pressure
- B. increasing the temperature
- C. removing some oxygen
- D. increasing the pressure
- E. increasing the volume of the container
- 20. The conjugate base of HSO₄ is _____.
 - A. OH-
 - B. H,SO₄
 - C. SO₄²⁻
 - D. HSO₄⁺
 - E. H₃SO₄⁺
- 21. The magnitude of K_w indicates that _____.
 - A. water autoionizes very slowly
 - B. water autoionizes very quickly
 - C. water autoionizes only to a very small extent
 - D. the autoionization of water is exothermic
 - E. none of the above

22. The K_a for HCN is 4.9×10^{-10} . What is the value of K_b for CN^- ?

- A. 2.0×10^{-5}
- B. 4.0×10^{-6}
- C. 4.9×10^4
- D. 4.9×10^{-24}
- E. 2.0×10^9

23. A Brønsted-Lowry base is defined as a substance that

- A. increases $[H^+]$ when placed in H_2O
- B. decreases [H⁺] when placed in H₂O
- C. increases [OH⁻] when placed in H₂O
- D. acts as a proton acceptor
- E. acts as a proton donor

24. Of the acids in the table below, _____ is the strongest acid.

Acid	Ka
HOAc	1.8×10^{-5}
нсно2	1.8×10^{-4}
HClO	3.0×10^{-8}
HF	6.8×10^{-4}

- A. HOAc
- B. HCHO₂
- C. HCIO
- D. HF
- E. HOAc and HCHO₂
- 25. In a solution, when the concentrations of a weak acid and its conjugate base are equal,
 - A. pH = 7.00
 - B. $pH > pK_a$
 - C. $pH = PK_a$
 - D. $pH < pK_a$
 - E. pH = 14

SECTION B

ANSWER QUESTION 1 TO 4 IN THE ANSWER BOOK 1. GIVE ALL NUMERICAL ANSWERS TO THE CORRECT NUMBER OF SIGNIFICANT FIGURES AND WITH APPROPRIATE UNITS.

QUESTION 1

1.1	Briefly describe and explain the variation of bonding atomic radius	
1.1.1 1.1.2 1.1.3	from left to right across the row. from top to bottom of the column. Given that $C - H$ bond length is 1.14 Å and the H bonding atomic	(2)
1.1.0	radius is 0.37 Å, calculate the carbon bonding atomic radius.	(2
1.2.	Arrange Mg ²⁺ , Ca ²⁺ , and Ca in order of decreasing radius	(3)
1.3	Write the condensed electron configuration of the following ions	
1.3.1 1.3.2 1.3.3	Ca ²⁺ Co ³⁺ S ²⁻	(2) (2) (2)
		[15]
QUES	TION 2	
2.1	Describe the following basic chemical bonds	
2.1.1 2.1.2 2.1.3	Metallic lonic Covalent	(1) (1) (1)
2.2	Briefly describe all the electrostatic interactions involved in a typical covalent bond such as in a hydrogen molecule $(H-H)$.	(3)
2.3	How many valence electrons should appear in the Lewis structure for:	
2.3.1 2.3.2	CH ₂ Cl ₂ Draw the Lewis structure of CH ₂ Cl ₂	(2) (1)
2.4	Methane is a molecule with a typical regular tetrahedral shape with bond angle of 109.5°. With an aid of a diagram briefly explain how the bond angle will vary in the following molecules.	
2.4.1 2.4.2 2.4.2	Chloromethane (CH ₃ CI) Ammonia (NH ₃) Water (H ₂ O)	(2) (2) (2)
		[15]

QUESTION 3

- 3.1 Describe the three characteristics of gases which make them distinguishable from liquids and solids. (3)
- 3.2 Boyle's Law describes the relationship between the pressure and volume of a given amount of gas.
- 3.2.1 State the Boyle's Law on gases

(1)

3.2.2 A volume of 7.8 L of a gas in trapped in a frictionless piston of plunger pump at 1 atm. The piston is pushed in to reduce the volume of a gas to 3.9 L. Calculate the new pressure of the gas.

(3)

3.3 An unknown gas composed of homonuclear diatomic molecules effuses at a rate that is 0.355 times the rate at which O₂ gas effuses at the same temperature. Calculate the molar mass of the unknown and identify it.

(4)

3.4 A mixture of 6.00 g $O_2(g)$ and 9.00 g $CH_4(g)$ is placed in a 15.0-L vessel at 0 °C. What is the partial pressure of each gas, and what is the total pressure in the vessel?

(4)[15]

QUESTION 4

4.1 The dichromate reacts with chloride acid according to the following redox reaction:

$$Cr_2O_7^{2-}(aq) + 8K^+(aq) + 14H^+(aq) + 7SO_4^{2-}(aq) + 6Cl^-(aq)$$

 $\rightarrow 2Cr^{3+}(aq) + 7SO_4^{2-}(aq) + 8K^+(aq) + 7H_2O(l) + 3Cl_2(g)$

Identify the following in the given reaction:

4.1.1 The oxidising agent,

4.1.3 The spectator ions.

(1)

4.1.2 The reducing agent, and

(1) (2)

- 4.2 Determine the oxidation number of the following;
- Bromine (Br) in the bromate ion, BrO_3^- 4.2.1

(1)

4.2.2 Sulphur (S) in the tetrathionate ion, $S_4 O_6^{2-}$

(2)

4.3 Use the given half-cell reactions to answer the following questions.

$$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l); E^0 = +1.51 V$$

 $Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq); E^0 = +0.77 V$

4.3.1 Write a balanced reaction equation for the preceding half-cell reaction. (2)

4.3.2 Calculate the e.m.f (standard cell potential) of the half-cell reactions

(1)

4.3.3 Explain the significance of a positive or a negative cell potential in terms of the feasibility of a redox reaction.

(2)

4.5 Calculate the number of grams of aluminum produced in 1.00 h by the electrolysis of molten AlCl₃ if the electrical current is 10.0 A.

(3)

[15]

QUESTION 5

5.1 At a temperature of 800 °C, steam passed over coke, reacts to form CO and H_2 :

$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

5.1.1 The equilibrium constant (K_p) for this reaction is 14.1. What are the equilibrium partial pressures of H₂O, CO and H₂ in the equilibrium mixture at this temperature if we start with solid carbon and 0.200 mol of H₂O in a 1500 mL vessel?

(8)

(3)

- 5.1.2 Predict what will happen to the equilibrium partial pressure of CO when the volume of the container is reduced to 750 mL?
- 5.1.3 At 25 °C the value of K_p for this reaction is 1.7 x 10^{-21} . Is this reaction exothermic or endothermic? Explain. (2)

[13]

(2)

QUESTION 6

- 6.1.1 Distinguish between Arhenius acid and a Lowry Bronsted acid.
- 6.2 Calculate the pH of a solution obtained by mixing 400 mL of a 0.200 M acetic acid solution and 100 mL of a 0.300 M sodium hydroxide solution. [K_a of acetic acid (CH_3COOH) = 1.8 x 10⁻⁵]

(12)

- 6.3 A solution is made up of 0.15 M NH₃(aq)
- 6.3.1 Calculate the pH of the NH₃(aq) $[K_b = 1.8 \times 10^{-5}]$

(6) (2)

6.3.2 Calculate the percentage ionization of NH₃(aq)

[22]

DATA

Avogadro's number: $N = 6.02 \times 10^{23}$

Plank constant, $k = 6.626 \times 10^{-34} \text{ J-s}$

0 °C = 273.15 K

Standard pressure = 1 atm = 101.325 kPa = 760 mmHg = 760 torr = 1.01325 bar

 $R = 8.31451 \text{ L.kPa } .\text{K}^{-1}.\text{mol}^{-1}$

= 8.31451 J.K⁻¹.mol⁻¹

 $= 8.31451 \times 10^{-2} \text{ L.bar .K}^{-1} \cdot \text{mol}^{-1}$

 $= 8.20578 \times 10^{-2} \text{ L.atm .K}^{-1}.\text{mol}^{-1}$

 $= 62.364 \text{ L.torr .K}^{-1}.\text{mol}^{-1}$

 $F = 9.6485 \times 10^4 \text{ C.mol}^{-1}$

 $V = J.C^{-1}$

IVERSITY OF JOHANNESBURG	Department of Applied Chemistry

a Applied Crieffilstry	<u> </u>
שלים וווופווו סו	2
חבלשכו	Atomic Number

		Atomic Weight
	He	4.0026 F
1		

He

3		4		00	
30	65.39	48	Cd 112.41		Hg 200.59
	63.546	47	Ag 107.87	6	Au 196.97
	58.69	46	Pd	78	Pt 195.08
27	58.933	45	Rh	77	Ir 192.22
26	55.847	44	Ru	76	Os 190.2
	1VIII 54.938	43	Tc (98)	75	Re 186.2
⁴ ر	51.996	2	M0 95.94	4	W 183.85

∞
14.007
16
30.974
34
74.922
52
121.75
84
_
208.98

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Lu	174.97	
Pm Sm Eu Gd Tb Dy Ho Er 67.26 68 68 68 69 68 69 68 69 69	70 71	Vb	173.04	
61 62 63 64 65 66 67 68 68 67 68 68 69 69 69 69 69 69	69	Tm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	89			
61 62 63 64 65 66	29			
61 62 63 64 65 65 PM	99	Dy		
61 62 63 64 64 64 64 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65	65	•		
Pm Sm 146.92 150.36	64	gg	157.25	
Pm Sm 146.92 150.36	63	En	151.97	
19	62	Sm	150.36	
50 Nd 144.24	19	Pm	146.92	-
	09	Nd	144.24	

Potential (V)	Reduction Half-Reaction
+2.87	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$
+1.51	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(l)$
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$
+1.23	$O_2(g) + 4 H^+(a\eta) + 4 e^- \longrightarrow 2 H_2O(I)$
+1.06	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$
+0.96	$NO_3(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$
+0.80	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$
+0.59	$MnO_4^{-}(aq) + 2H_2O(l) + 3e^{-} \longrightarrow MnO_2(s) + 4OH^{-}(aq)$
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(\alpha g)$
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$
0 [defined]	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(q)$
-0.28	$Ni^{2+}(aq) + 2e^- \longrightarrow Ni(s)$
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$
-0.76	1
-0.83	$2 \text{ H}_2\text{O}(l) + 2 \text{ e}^- \longrightarrow \text{H}_2(g) + 2 \text{ OH}^-(aq)$
-1.66	$AI^{3+}(aq) + 3e^- \longrightarrow AI(s)$
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$
-3.05	$Li^+(aq) + e^- \longrightarrow Li(s)$