FACULTY OF SCIENCE #### **DEPARTMENT OF APPLIED CHEMISTRY** NATIONAL DIPLOMA: ANALYTICAL CHEMISTRY **MODULE:** CET3APC **POLYMER CHEMISTRY 3** **CAMPUS** **DFC** #### JUNE EXAMINATION | Name (Optional): | | | * | | |---|---|-----|----------------------------|-----------------------| | Student Number: | R | | | | | Signature: | | | | | | DATE: 5 th June 2018 EXAMINER: | | , * | SESSION:
Prof PG Ndungu | 12:30 – 15:30
(UJ) | | INTERNAL MODERATOR: | | | Dr M Mamo (UJ) | | | EXTERNAL MODERATOR: | | | Dr SP Hlangothi (| (NMMU) | #### **DURATION:** **3 HOURS** | Question | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | TOTAL | |-----------|----|----|---|----|----|----|---|----|---|----|-------| | Marks | 5 | 12 | 2 | 23 | 16 | 10 | 6 | 10 | 4 | 12 | 100 | | Examiner | | | | | | | | | | | | | Moderator | | | | | | | | | | | | Percentage (%) = #### **NUMBER OF PAGES:** 1 Cover PAGE + 15 PAGES PERIODIC TABLE ### **INSTRUCTIONS:** - ANSWER ALL QUESTIONS IN PEN IN THE SPACES PROVIDED - CALCULATORS ARE PERMITTED, BUT EACH STEP IN ANY CALCULATION MUST BE SHOWN. - THE BLANK SIDE OF THE PAGES MAY BE USED FOR EXTRA SPACE OR FOR ROUGH WORK (INDICATE CLEARLY) ### **REQUIREMENTS:** **GRAPH PAPER** From a historical perspective, would you classify the current age as the Stone Age, Bronze Age, Iron Age, or Plastic Age, and provide a reasonable explanation for your answer. Complete the following table: | Polymer Structure | Polymer Name | Mn | DP | |--|--------------|---------|----| | | | 120 000 | | | CH ₃ CH ₃ | | | | | | | 200 000 | | | H CH ₃ -C-C - H C-O-CH ₃ - O - CH ₃ | | 98 565 | | | H CI | | 240 000 | | Provide simple illustrations that show the differences between homopolymer, random copolymer, alternating copolymer, and a block copolymer. [2] ### **QUESTON 4** a. Provide a short definition of step growth polymerization. (2) b. Polybutylene succinate is a biodegradable polymer that can be synthesised from succinic acid and 1,4-butanediol. What by-product would you expect from the polymerisation reaction? c. Provide a plausible mechanism for the formation of the dimer during the synthesis of polybutylene succinate from succinic acid and 1,4-butanediol, and provide an overall equation for the polymerisation. (8) d. Nonjabulo is setting up a company in Limpopo to synthesize polybutylene succinate shopping bags for a local retailer. To save costs, Nonjabulo decides to make the polymer with a DP of 1200, and without a catalyst at 200 °C using an initial concentration of 7.5 M succinic acid. If the rate of polymerisation for the reaction is 5.6 x 10⁻³ L mol⁻¹ s⁻¹, how long will it take to make the polymer? Provide your answer in number of days (6) e. As an intern at Nonjabulo's company, what would you recommend they add to the reaction system to decrease the time for the synthesis of the polymer? (1) f. The additive added to the polymerisation reaction changes the rate to 1.1×10^{-2} L mol⁻¹ s⁻¹, using 3.0 M of succinic acid, a target DP = 800, and a temperature of 200 °C, how long will the reaction take? Provide your answer in number of hours. (4) g. Why is the reaction carried out at 200 $^{\circ}$ C? (1) The initiator, 4,4'-Azobis(4-cyanovaleric acid), can be used with the monomer styrene (C_8H_8) to produce polystyrene The reaction is very exothermic. a. Is the initiator 4,4'-Azobis(4-cyanovaleric acid) a cationic, anionic, or radical initiator? (1) b. Approximately how much initiator is needed to produce 100 kg of the polymer with a DP of 1400? (6) c. You have won a young entrepreneurship award to start a polymer processing factory that produces polystyrene for export across the African continent. Your first production run at your factory produced a polymer with $M_n=330\ 000\ g/mol$, using ethylbenzene as a chain transfer agent (chain transfer agent/monomer ratio = 0.365). If the chain transfer constant was 0.00067, calculate DP and M_n for the reaction with no chain transfer agent. (5) d. The product produced in your factory is atactic; however, your sales engineers has suggested that isotactic polystyrene would be much more profitable if sold on the open market. Provide an illustration that shows the differences between atactic and isotactic polystyrene, and suggest a method to produce the isotactic form. (4) [16] ### **QUESTON 6** a. Define emulsion polymerisation (2) b. List the advantages and disadvantages of emulsion polymerisation. (8) How are solubility parameters useful in an industrial setting? [6] ## **QUESTON 8** The following questions concern end group analysis of polymers. a. What is end group analysis when determining polymer molecular weight? (4) b. The molecular weight of polyethylene glycol (PEG) can be determined using end group analysis using excess pyromellitic diahydride. The un-balanced equation is as follows: The excess unreacted pyromellitic diahydride is then reacted with water to form the acidic form (balanced equation): $$+2 H_2O \longrightarrow 0H OH OH$$ How many moles of NaOH will react with 1 mole of the acidic form of the diahydride? (1) c. If 55.15 mL of 0.25 M NaOH are used to titrate the acidic form of PMDA, how many moles of PMDA were present? (1) d. If the initial mass of PMDA was 0.8555 g, how moles of PEG were used? e. Based on the moles of PMDA (4 mol PMDA: 1 mol PEG) used calculate the average molecular weight of PEG given that the initial mass of PEG was 0.1515 g (2) [10] ## **QUESTON 9** Provide a brief overview of plasticisers and how they affect polymer properties. Provide a diagram and a brief explanation on the process of compression moulding, two examples of polymers used and types of products produced using this process. [12] **TOTAL 100 MARKS** ### **DATA PAGE** | $\overline{X}_n = \frac{1}{1-P}$ | $\overline{DP} = 1 + K^{1/2}$ | $p = \frac{K^{1/2}}{1 + K^{1/2}}$ | $r = \frac{K_{11}}{K_{12}}$ | |---|--|--|--| | $\overline{DP} = \frac{\overline{M_{n}}}{m}$ | $[H_20] = \frac{K[M]_0}{\overline{X_n}(\overline{X_n} - 1)}$ | $\frac{1}{DP} = \frac{1}{DP_0} + C \frac{[TH]}{[M]}$ | $r = \frac{K_{22}}{K_{21}}$ | | $\overline{DP}_n=2\nu$ | $\overline{M}_n = M_0 \overline{D} \overline{P}_n$ | $\eta_{rel} = rac{\eta}{\eta_0} = rac{t}{t_0}$ | $\overline{DP}_n = v$ | | $\overline{\rm DP} = \frac{\overline{\rm M_n}}{\rm m}$ | $\overline{M}_n = M_0 \overline{DP}_n$ | $\left(\frac{\pi}{C}\right)_{c=0} = \frac{RT}{M_n} + A_2C$ | $\eta_{sp} = \frac{\eta - \eta_0}{\eta_0}$ | | $\overline{\mathbf{M}_{\mathbf{w}}} = \sum \mathbf{M}_{\mathbf{i}} \mathbf{W}_{\mathbf{i}}$ | $\nu = \frac{K_p^2[M]^2}{2K_tR_p}$ | $R_{pol} = \left[K_p \left(\frac{f K_d}{K_t} \right)^{1/2} [M] [I]_0^{1/2} \right] e^{-K_d t/2}$ | $\eta_{red} = \frac{t - t_0}{t_0 C}$ | | $\overline{\mathbf{M}_{\mathbf{n}}} = \sum \mathbf{M}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}$ | $R_i = 2fK_d[I]$ | $R_t = 2K_t[M\bullet]^2$ | $\eta_{inh} = \frac{\ln \eta_{rel}}{C}$ | | $\mathbf{k}_{t} = \mathbf{A}_{t} \mathbf{e}^{-\mathbf{E}_{t}/_{RT}}$ | $\mathbf{k}_{\mathbf{p}} = \mathbf{A}_{\mathbf{p}} \mathbf{e}^{-\mathbf{E}_{\mathbf{p}}}/\mathbf{R}\mathbf{T}$ | $\mathbf{k_d} = \mathbf{A_d} \mathbf{e^{-E_d}}/\mathbf{RT}$ | $[\eta] = KM_V^{\alpha}$ | | $C = \frac{K_{\rm tr}}{K_{\rm p}}$ | $[M \bullet] = \left(\frac{fK_d[I]}{K_t}\right)^{1/2}$ | $[COOH]_0kt = \frac{1}{(1-p)} - 1$ | $\overline{DP} = \frac{1}{1 - P}$ | | $PDI = \frac{M_W}{M_n}$ | $\overline{\mathrm{DP}} = \frac{1+r}{r+1-2rp}$ | $\frac{1}{(1-p)^2} = 2k[COOH]_0^2 t + 1$ | $r_i = 2K_d[I]$ | ### **Some Useful Constants:** $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ $R = 8.3143 \text{ J K}^{-1} \text{ mol}^{-1}$ $R = 0.0820574 \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$ $R = 0.0831447 \text{ dm}^3 \text{ bar } K^{-1} \text{ mol}^{-1}$ $R = 8.314462 \text{ m}^3 \text{ Pa K}^{-1} \text{ mol}^{-1}$ 1 electron volt = $1.60217646 \times 10^{-19}$ joules $F = 96485.3399 \text{ C mol}^{-1}$ | VIIIA
8A
8A
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 10 Neon 20.180 | 18
Argon
39.948 | 36
Krypton
83.798 | Xe Xenon Xenon 131.294 | 86
RM
Radon
222.018 | 000
Oganesson
(294) | |---|--------------------------|---------------------------------|--|----------------------------------|---------------------------------------|------------------------------| | 17
VIIA | 7A Fluorine 18.993 | Chlorine 35.453 | 35 Br
Bromine
79.904 | 53 | 85 At Astatine 209.987 | TS
Tennessine
[294] | | 16
VIA | 8
Oxygen
15.999 | 16
Sulfur
32.066 | Selenium 78.971 | 52
Tellurium
127.6 | 84
PO
Polonium
[208.982] | 116 Livermorium [293] | | 15
VA | Nitrogen 14.007 | 15
Phosphorus | 33
AS
Arsenic
74.922 | Sh
Antimony
121.760 | 83
Bi
Bismuth
208.980 | Mc
Moscovium
[289] | | 14
IVA | 6 A Carbon 12:011 | Silicon
28.086 | 32
Ge
Germanium
72.631 | 50
SD
Tin
118711 | 82 Pb | 114 F Flerovium [289] | | 13
IIIA | 3A
Boron
10,811 | 13
All
Aluminum
26.982 | Gallium 69.723 | 149 In Indian 114818 | 7 Thallium 204.383 | Nihonium [286] | | ents | | 12
118
218 | 30
Znc
Znc
65.38 | 48
Cadmium
112.414 | 80
Mercury
200.592 | Copernicium [285] | | Elem | | 11
81
81 | Copper 63.546 | 47
Silver
107.868 | 73
AU
Gold
196.967 | Roentgenium [280] | | of the | | 9 ~ | 28
Nickel
58.693 | Pd
Palladium
106.42 | 78
Pt
Platinum
195.085 | Damstadtium [281] | | able | | 9
— mv — | 27
Cobalt
58,933 | Rhodium
102.906 | TT
Indium
192.217 | . Mt
Meitherium
[278] | | Periodic Table of the Elements | | | 26
Fe Iron 55.845 | Ruthenium 101.07 | 76
OSmium
190.23 | Hassium [269] | | Peri | | 7
VIIB
7B | Manganese 54.938 | Tc Fechnetium 98.907 | Re Rhenium 186.207 | Bh
Bohrium
[264] | | | | 6
VIB
6B | Chromium S1.996 | Mo
Molybdenum
95.95 | 74 W
Tungsten
183.84 | Seaborgium [266] | | | | 5
VB
58 | Vanadium 50.942 | Niobium 92.906 | 73
Tan
Tantalum
180.948 | 105 Db Dubnium [262] | | | | 48
48 | Titanium 47.867 | Zr
Zirconium
91.224 | Hafinium 178.49 | 104 Rf Rutherfordium [261] | | | | 3
IIIB
38 | Scandium
44.956 | 39
Y
Yttrium
88.906 | 57-71 | 89-103 | | 2
IIA
2A | Beryllium
9.012 | Mgmesium 24.305 | Calcium
40.078 | Strontium
87.62 | Banum
Barium
137.328 | Radium 226.025 | | 1 LA 1.008 | Luthium 6.941 | Sodium 22.990 | K Potassium 39.098 | Rb
Rubidium
85.468 | Cesium
132.905 | Fr
Francium
223.020 | | rthanide
Series | La
Lanthanum | Cerium
140 116 | Praseodymium 1 | Neodymium
144.243 | Pm
Promethium
144.913 | Samarium
150.36 | Europium
151.964 | Gadolinium
157.25 | Tbb 158 925 | Dysprosium
162.500 | Holmium 164 930 | Erbium 167.259 | Tm Thulium 168 934 | Yb Ytterbium 173 055 | Lutetium 174 967 | |--------------------|------------------|--------------------------|----------------------|---------------------------|-----------------------------|----------------------------|-----------------------------|-------------------------|----------------------------------|-----------------------|-----------------|---------------------------------|--------------------|----------------------------|------------------| | Actinide
Series | Actinium 227.028 | 90
Thorium
232.038 | Protactinium 231,036 | .92
Uranium
238.029 | Neptunium 237.048 | Pu
Plutonium
244.064 | Am Americium 243.061 | 96
Curium
247 070 | 97
Bk
Berkelium
247.070 | Californium 251.080 | Einsteinium | 100
Fm
Fermium
257.095 | Mendelevium 258.1 | 102
Nobelium
259.101 | 103 Lawrencium |