

FACULTY OF SCIENCE

DEPARTMENT OF APPLIED CHEMISTRYNATIONAL DIPLOMA: BIOTECHNOLOGY

NATIONAL DIPLOMA: FOOD TECHNOLOGY

MODULE

CHEMISTRY 1A3E/1XA2

CET1A3E/CET1XA2

CAMPUS

DFC

JUNE EXAMINATION

DATE: 5/6/2018

SESSION: 12:30-15:30

ASSESSOR:

DR SP MALINGA

INTERNAL MODERATOR:

DR LN DLAMINI

DURATION 3 HOURS

MARKS: 147

NUMBER OF PAGES: 8

PAGES

INSTRUCTIONS:

MULTIPLE CHOICE QUESTIONS OF <u>PART A</u> AND <u>PART B</u>
MUST BE ANSWERED IN SEPARATE <u>MULTIPLE CHOICE</u>

ANSWER SHEETS. MAKE SURE YOU MARK EACH SHEET CLEARLY. CALCULATORS ARE PERMITTED (ONLY ONE PER

STUDENT).

THIS QUESTION PAPER MUST BE PLACED INSIDE YOUR

ANSWER BOOK UPON HANDING IN.

REQUIREMENTS:

2 x UJ MULTIPLE CHOICE ANSWER SHEETS.

1 x EXAMINATION BOOK.

PART A - GENERAL CHEMISTRY INSTRUCTIONS - SECTION 1

- 1. Clearly mark your multiple choice answer sheet: GENERAL CHEMISTRY
- 2. Write your name and fill out your student number on the multiple choice answer sheet.
- 3. Do not fold or staple the multiple choice answer sheet.
- **4.** Indicate each answer clearly by <u>blocking out</u> the chosen letter, preferably with a **soft pencil** although pen can be used.
- **5.** Only <u>one</u> answer per question is correct. There will be no negative marking to penalise incorrect answers, but if you enter more than one choice per question you will receive zero for that question.
- **6.** Mistakes may be corrected by carefully erasing the pencil marking. Once erased, your new choice must be indicated as described on the multiple choice answer sheet. Do not use typex.

SECTION 1 – MULTIPLE CHOICE

- 1. Select the strong acid from the list below:
- A. HNO₂
- B. CH₃COOH
- C. HNO₃
- D. NH₄⁺
- 2. The pH of the solution of 0.0142 M Ca(OH)₂ is:
- A. 1.55
- B. 1.85
- C. 12.15
- D. 12.45
- 3. Which of the following are conjugate acid-base pairs?
- A. H₂SO₄; SO₄²⁻
- B. H₂SO₃; HSO₃²⁻
- C. HClO₄; ClO₃-
- D. CH₃NH₃⁺; CH₃NH₂
- Given the equation:

$$2Cr(s) + 3Pb^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Pb(s)$$

which is the correct reduction half-reaction?

- A. $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$
- B. $Pb^{2+}(aq) \rightarrow Pb(s) + 2e^{-}$
- C. $Cr(s) \rightarrow Cr^{3+}(aq) + 3e^{-}$
- D. $Cr(s) + 3e^- \rightarrow Cr^{3+}(aq)$

- 5. The oxidation number of Mn in Mn₂O₇ is:
- A. +14
- B. +7
- C. +6
- D. +12
- 6. The pH of a mixture containing 50.00 mL of 0.125 M HCl and 50.00 mL of 0.125 M KOH is:
- A. 12.62
- B. 10.33
- C. 7.00
- D. 2.73
- 7. Which one of the following equations is a redox equation?
- A. $Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$
- B. $Ba(s) + Cl_2(g) \longrightarrow BaCl_2(s)$
- C. BaCO₃(s) + 2H⁺(aq) \longrightarrow Ba²⁺(aq) + CO₂(g)
- D. Ba(NO₃)₂(aq) + K₂CO₃(aq) \longrightarrow BaCO₃(s) + 2KNO₃(aq)
- 8. The pH of an aqueous solution changes from 5.20 to 8.60. What has happened to the hydronium ion concentration?
- A. increased
- B. decreased
- C. become zero
- D. did not change
- 9. The molar H⁺ concentration of a solution with a pH of 9.9 is:
- A. $5.65 \times 10^{-11} \text{ M}$
- B. 1.26 × 10⁻¹⁰ M
- C. $2.82 \times 10^{-5} \text{ M}$
- D. $3.23 \times 10^{-4} \text{ M}$
- 10. The reaction between calcium hydroxide and ammonium chloride is best described as a(n):
- A. combination reaction
- B. precipitation reaction
- C. redox reaction
- D. acid-base reaction
- 11. What do we call the reaction of an acid with a base?
- A. oxidation
- B. neutralisation
- C. amphoteric
- D. reduction
- 12. A substance which ionizes completely in solution is called a:
- A. non-electrolyte
- B. weak electrolyte
- C. strong electrolyte
- D. none of the above

 $[12 \times 2,5 = 30]$

SECTION 2 – LONG QUESTIONS

QUESTION 1

- 1.1 Calculate the pH AND pOH for each of the following:
- 1.1.1 1.52 g of HNO₃ in 575.00 mL of solution [Molar mass (g mol⁻¹): HNO₃ = 63.0119] (6)
- 1.1.2 $5.251 \times 10^{-4} \,\text{M}$ of KOH (4)
- 1.1.3 $3.893 \times 10^{-5} \text{ M of [H^+]}$ (3)
- 1.2 A 0.100 M solution of chloroacetic acid (ClCH₂COOH) is 11.05% ionized. Using this information, calculate [ClCH₂COO⁻], [H⁺], [ClCH₂COOH] and K_a for chloroacetic acid (7)
- 1.3 Calculate the K_a (acid-dissociation constant) of a 0.020 M solution of niacin $(C_6H_5NO_2)$ at a pH of 3.26. (9)
- The active ingredient in aspirin is acetylsalicylic acid ($HC_9H_7O_4$), a monoprotic acid with $K_a = 3.3 \times 10^{-4}$ at 25°C. What is the pH of a solution obtained by dissolving two extra-strength aspirin tablets, containing 500 mg of acetylsalicylic acid each in 250 mL of water? [Molar mass (g mol⁻¹): $HC_9H_7O_4 = 180.157$] (12)

[41]

QUESTION 2

- 2.1 In an analysis 1.2278 g of antacid powder was weighed and 29.61 mL of 1.0360 M HCl were added to neutralise the antacid. If excess HCl required 27.35 mL of 0.5034 M NaOH for neutralisation, calculate the %(w/w) OH⁻ in the powder. [Molar mass OH⁻: 17.007 g mol⁻¹]
- 2.2 Consider the following redox equation occurring in an acidic medium and answer the question below:

$$Cr_2O_7^{2-} + C_2O_4^{2-} \longrightarrow Cr^{3+} + CO_2$$

- 2.2.1 Identify the reducing agent in the above half reactions **AND** define the term reducing agent. (3)
- 2.2.2 Calculate the oxidation number of Cr in Cr₂O₇²⁻. (2)
- 2.2.3 Balance each half reaction and classify each as a reduction or oxidation. (4)
- 2.2.4 Write the overall balanced redox equation. (3)

[18]

PART B - ORGANIC CHEMISTRY

INSTRUCTIONS - SECTION 1

- 1. Clearly mark your multiple choice answer sheet: ORGANIC CHEMISTRY
- 2. Write your name and fill out your student number on the multiple choice answer sheet.
- 3. Do not fold or staple the multiple choice answer sheet.
- Indicate each answer clearly by <u>blocking out</u> the chosen letter, preferably with a soft pencil although pen can be used.
- 5. Only <u>one</u> answer per question is correct. There will be no negative marking to penalise incorrect answers, but if you enter more than one choice per question you will receive zero for that question.
- 6. Mistakes may be corrected by carefully erasing the pencil marking. Once erased, your new choice must be indicated as described on the multiple choice answer sheet. Do not use typex.

SECTION 1 – MULTIPLE CHOICE

- 1. Which of the following compounds has the highest solubility in water?
- A. CH₃CH₂-O-CH₂CH₂CH₃
- B. CH₃CH(OH)CH₂CH₂CH₃
- C. CH₃(CH₂)₃CH₃
- D. CH₃CH(OH)CH(OH)CH₂CH₃
- Classify each of the following amines as primary, secondary or tertiary.

$$(CH_3)_2CHNH_2$$
 $(CH_3)_3CNH_2$ $|||$

- A. I Primary, II Primary, III Tertiary
- B. I Primary, II Secondary, III Secondary
- C. | Primary, II Tertiary, III Secondary
- D. I Secondary, II Primary, III Tertiary
- The reaction of 2-pentanol with KMnO₄ to form pentanone is called:
- A. Substitution
- B. Addition
- C. Oxidation
- D. Elimination

- 4. The compound pyridine (C₄H₉N) is an example of a:
- A. cyclic ester
- B. heterocyclic amine
- C. tertiary alcohol
- D. cyclic amide
- 5. The names of the acid and alcohol used to prepare the following compound is:

- A. butanoic acid and phenol
- B. benzoic acid and butanol
- C. butanoic acid and 2,2-dihydroxybenzene
- D. 2-hydroxybenzoic acid and butanol
- 6. Which compound shows hydrogen bonding?
- A. CH₃CH₃
- B. CH₃OCH₃
- C. CH₃CH₂OH
- D. CH₃CH₂Cl
- 7. Ethers show constitutional (structural) isomerism with:
- A. aldehydes
- B. alcohols
- C. ketones
- D. carboxylic acid
- 8. Propanal and propanone can be distinguished by:

(ii) Alcohols

- A. the Tollen' Test
- B. the Lucas Test
- C. their solubility in water
- D. All of the above
- 9. Which of the following classes of compounds contain a carbonyl carbon?

(iii) Phenols

(iv) Ketones

- (i) Aldehydes
- A. (i), (iv)
 - (i), (iii)
- C. (i), (ii)

B.

D. (i), (iii), (iv)

10. Compounds of the type R₃C-OH are referred to as alcohols.

- A. secondary
- B. quaternary
- C. primary
- D. tertiary

[10 x 2= 20]

SECTION 2 - LONG QUESTIONS

QUESTION 1

1.1	Draw the bondline structures which correspond with the given names.	
1.1.1	2,2-dimethyl-1,3-heptanediol	(3)
1.1.2	isopropyl 4-methylpentanoate	(3)
1.1.3	1,5- pentanedioic acid	(3)
1.1.4	3-pentenal	(3)
1.1.5	formaldehyde	(3)
		[15]

QUESTION 2

- 2.1 Name the following compounds according to IUPAC rules:
- 2.1.1 (CH₃)₂CH-N(CH₂-CH₃)₂
- 2.1.2 CH₃CH₂CH(CH₃)CH₂CI

HO

2.1.3

2.2 Explain together with a diagram why butanol is more soluble in water than butane (6)

2.1.4

2.3 Arrange the following compounds according to their expected boiling points, starting with lowest boiling point first and explain your answer. (6)

Diethyl ether, sec-Butyl alcohol, pentane

[23]

(11)

UNIVERSITY OF JOHANNESBURG Department of Applied Chemistry

		N 14.007	P 30.974		As	74.922		Sb	(1.121	Bi	208.98			
	-	C 12.011	Si 28.086	33	ge Ge	72.61	51	Sn	110.71	Pb	207.2			
		B 10.811	Al 26.982	32	Ga	69.723	20	In	114.02	II	204.38			
	L	8	13	31		0	49		 		6			
				30	$\mathbf{Z}\mathbf{n}$	65.39	48	\cup	112.41	Hg	- 1			
		ight		29	Cu	63.546	47	Ag	79 79	Au	196.97			
		Atomic Weight			Z	58.69	46	Pd	78 78	Pt	195.08			
•		4.0026 A		28	C	58.933		Rh	107.91	Ir	192.22			
	² He	4		27	Fe	55.847	45		101.07	Os	190.2			
	Atomic Number			26	Mn	54.938	44		(98)	Re	186.2			
	Atomic			25		51.996	43		75.75		183.85			
			181	24	C		42	2	74	M				
				23		50.942	41		92.906	Ta	180.95			
				2	Ti	47.88	40	Zr	91.224	HIf	178.49			
				2	Sc	44.956		X	88.906	La	138.91		Ac	227.03
	_			21		_	39		57		-	8		~
		Be 9.0122	12 Mg 24.305	20	Ca	40.078	38	Sr	87.62	Ba	137.33	88	Ra	226.03
	H 1.0079	Li 6.941	Va 22.990		X	39.098		Rb	85.47	S	132.91		Fr	(223)

Ar 39.948

CI 35.453

S 32.064 K

Br79.904

Se 78.96

Ne 20.179

18.998

15.999

0

He 4.0026

Rn (222)

At

Po

(210)

(506)

Xe 131.29

I 126.90

Te 127.60

58	59	09	19	62	63	64	9	99	67	89	69	70	71
Ç	Pr	Nd	Pm	Sm	Eu	PS	Tp	Dy	Ho	Er	Tm	ΛP	
140.12	140.91	144.24	146.92	150.36	151.97	157.25					168.93	173.04	174.97
06	91	92	93	94	95	96	26	86	66	100	101	102	103
Th	Pa	Ω	d'Z	Pu	Am	Cm	Bk	Cf	ES	Fm	Md	^o Z	\dashv
232.04	231.04	238.03		(244)		(247)		(251)	(252)	(257)	(258)	(259)	(260)