

PROGRAM

: BACCALAUREUS TECHNOLOGIAE

CHEMICAL ENGINEERING

SUBJECT

: CHEMICAL ENGINEERING

TECHNOLOGY 4 (HEAT AND MASS)

CODE

: WARC432

DATE

: SSA WINTER EXAMINATION

17 JULY 2018

DURATION

: (SESSION 1) 08:00 - 11:00

WEIGHT

: 40:60

TOTAL MARKS

: 100

EXAMINER

: DR N. MAZANA

720000739

MODERATOR

: OBOIRIEN BILAINU

720043632

NUMBER OF PAGES

: 3

INSTRUCTIONS

: WORK ACCURATELY AND ANSWER ALL QUESTIONS.

NON-PROGRAMMABLE CALCULATORS PERMITTED

(ONLY ONE PER CANDIDATE).

QUESTION 1 [20 marks]

Determine the rate of heat transfer by conduction per unit area, by means of conduction for a furnace wall made of fire clay. Furnace wall thickness is 6" or half a foot. Thermal conductivity of the furnace wall clay is $0.3~\text{W/m} \cdot \text{K}$. The furnace wall temperature can be taken to be same as furnace operating temperature which is 650°C and temperature of the outer wall of the furnace is 150°C .

QUESTION 2 [20 marks]

Using the energy balance method derive the finite-difference equation for the (m,n) nodal point located on a plane, insulated surface of a medium with uniform heat generation. Assume that $q_3=0$.

Formulas:

$$\dot{E}_{\rm in} + \dot{E}_{\rm g} = 0$$

$$\sum_{i=1}^{4} q_{(i) \to (m,n)} + \dot{q}(\Delta x \cdot \Delta y \cdot 1) = 0$$

QUESTION 3 [30 marks]

Given: A composite consisting of five sections, as shown in the figure. k1 = k3 = 80 W/mK, k2 = 120 W/mK, k4 = 100 W/mK, and k5 = 150 W/mK.

Fired: Construct the thermal circuit model and find the total thermal resistance.

Assumptions: 1-D steady-state conduction.

QUESTION 4 [30 marks]

Given: Same composite as in Question 2. $T_{left} = 20 \, ^{\circ}\text{C}$, $T_{right} = 80 \, ^{\circ}\text{C}$; $h = 15 \, \text{W/m}^2\text{K}$ on both sides.

Find: Heat transfer rate through the composite.

Assumptions: 1D steady-state conduction.