

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY / EXTRACTIVE

METALLURGY

SUBJECT

: MATERAL TESTING: METALLURGY

CODE

: MTM 3111

DATE

: MAIN EXAMINATION

JUNE 2018

DURATION

: 3 hours

WEIGHT

: 40: 60

TOTAL MARKS

: 100

FULL MARKS

: 100

EXAMINER

: MISS TS TSHEPHE

MODERATOR

: DR D NYBWE

NUMBER OF PAGES: 2 PAGES IN TOTAL

INSTRUCTIONS

: ALL THE ANSWERS MUST BE COMPLETED

IN THE EXAM SCRIPTS AND HANDED IN

REQUIREMENTS

: 1 POCKET CALCULATOR

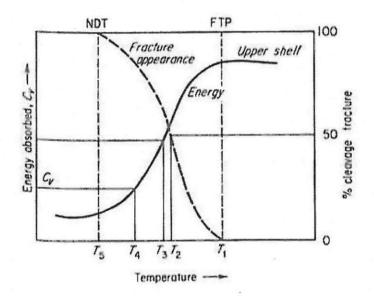
NO CORRECTION FLUID SHALL BE USED

ALL WORK SHALL BE HANDED IN.

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS

QUESTION 1


1.1.	What are the three basic assumptions made when analysing the streng	th of
	material?	(3)
1.2.	Discuss the three general ways that causes failures in structural members	and
	machine elements	(6)
1.3.	A piece of copper originally 305 mm long is pulled in tension with a stre	ss of
	276 MPa. If the deformation is entirely elastic, what will be the resu	ultant
	elongation? E = 110GPa	(8)
1.4.	A cylindrical specimen of steel having an original diameter of 12.8 mm is te	nsile
	tested to fracture and found to have an engineering fracture strength of	460
	MPa. If its cross-sectional diameter at fracture is 10.7 mm, determine:	
	(a) The ductility in terms of percent reduction in area	(5)
	(b) The true stress at fracture	(5)
QUESTION 2		
2.1.	List the three general types of hardness measurements	(3)
2.2.	The Brinell hardness number (BHN or $H_{\mbox{\scriptsize B}}$) is expressed as the load P div	/ided
	by surface area of the indentation. Show the mathematical expression	n to
	calculate the Brinell hardness number.	(2)
2.3.	A 10-mm-diameter Brinell hardness indenter produced an indentation 2.50	
	in diameter in a steel alloy when a load of 1000 kg was used. Compute the	
	of this material.	(3)
QUESTION 3		
3.1.	Discuss the three main creep deformation mechanisms	(8)
3.2.	Explain the difference between creep test and rupture test	(4)
3.3.	At what temperature can a material experience creep?	(2)

QUESTION 4

- 4.1. What is fatigue? (2)
- 4.2. Discuss the three stages to fatigue failure (6)
- 4.3. Show the three types of fluctuating stress curves. Label each curve correctly. (9)
- 4.4. What are the three surface effects on fatigue? (3)

QUESTION 5

- 5.1. What type of test is done to determine the susceptibility of materials to brittle behaviour? (2)
- 5.2. Explain the following transition temperatures on the curve bellow. Explain T_1 , T_2 , T_3 , T_4 and T_5 (10)

- 5.3. Discuss the effects of crystal structure on the DBTT curve (10)
- 5.4. Briefly discus the magnetic particle test. (9)

TOTAL [100]