

PROGRAM

: NATIONAL DIPLOMA

ENGINEERING METALLURGY / EXTRACTIVE

METALLURGY

SUBJECT

: MATERAL TESTING: METALLURGY

CODE

: MTM 3111

DATE

: SUPPLEMENTARY EXAMINATION

JUNE 2018

DURATION

: 3 hours

WEIGHT

: 40: 60

TOTAL MARKS : 100

FULL MARKS

: 100

EXAMINER

: MISS TS TSHEPHE

MODERATOR : DR D NYBWE

NUMBER OF PAGES: 3 PAGES IN TOTAL

INSTRUCTIONS

: ALL THE ANSWERS MUST BE COMPLETED

IN THE EXAM SCRIPTS AND HANDED IN

REQUIREMENTS

: 1 POCKET CALCULATOR

NO CORRECTION FLUID SHALL BE USED

ALL WORK SHALL BE HANDED IN.

INSTRUCTIONS TO CANDIDATES:

PLEASE ANSWER ALL THE QUESTIONS

QUESTION 1

1.1.	What is strength of materials?	(2)
1.2.	State if the following statements are true or false:	
1.2.1.	In equilibrium condition, if there are the external forces acting on the mer	nber
	there will be the internal forces resisting the action of the external loads.	(2)
1.2.2.	The internal resisting forces are usually expressed by the stress acting o	ver a
	certain area, so that the internal force is the integral of the stress time	s the
	differential area over which it acts	(2)
1.2.3.	Excessive plastic deformation occurs when the elastic limit is exceeded yie	lding
		(2)
1.2.4.	Failure due to excessive elastic deformation is controlled by the strength of	of the
	materials	(2)
1.0	For a brass alloy, the stress at which plastic deformation begins is 345 l	MDa
1.3.	and the modulus of elasticity is 103 GPa.	vii a
	and the modulus of elasticity is 105 of a.	
	(a) What is the maximum load that may be applied to a specimen with a c	ross-
	sectional area of 130 mm ² without plastic deformation?	(5)
	(b) If the original specimen length is 76 mm, what is the maximum leng	th to
	which it may be stretched without causing plastic deformation?	(5)
OUES	TION 2	
QULU		
2.1.	Discuss the three impressions made by the Vickers hardness	(6)
2.2.	Determine the Brinell hardness number and predict the tensile strength of	f the
	plate if a 10mm diameter indenter and a 3000kg load, produces an indent	ation
	of 4.5mm on a nickel plate (5)

QUESTION 3

3.1. From the curve below, write mathematical expressions to calculate the following:

- 3.2. A 4340 steel bar is subjected to a fluctuating axial load that varies from a maximum of 330 kN tension to a minimum of 110 kN compression. The mechanical properties of the steel are: σ_u = 1090 MPa, σ_o = 1010 MPa, σ_e = 510 MPa. Determine the bar diameter to give infinite fatigue life based on a safety factor of 2.5. (10)
- 3.3. Discuss the four commercial methods that introduces favourable compressive stress (8)

QUESTION 4

- 4.1. Show a typical creep curve and explain the three stages of creep (8)
- 4.2. Discuss the three deformation processes at elevated temperature (6)

4.3	B. Explain the following creep mechanisms:	
	(a) Dislocation glide	(2)
	(b) Diffusion creep	(2)
	(c) Grain boundary sliding	(2)
QL	JESTION 5	
5.1	. What are the three factors that contribute to a brittle cleavage fracture?	(3)
5.2	Show how does grain size affects the DBTT curve	(4)
5.3	. Discuss the five embrittlement processes in metals	(10)
5.4	List four reasons why NDT are used?	(4)
TOTAL [10		