

PROGRAM

: BENGTECH

CHEMICAL ENGINEERING

SUBJECT

: Chemical Engineering Fundamentals 2A

CODE

: CEFCHA2

DATE

: WINTER EXAMINATION

26 MAY 2018

DURATION

: (SESSION 1): 08:30 - 11:30

WEIGHT

: 40:60

TOTAL MARKS

: 100

EXAMINER

: DR N. MAZANA

720000739

MODERATOR

: MR PHATHUTSHEDZO KHANGALE

720039271

NUMBER OF PAGES

3

INSTRUCTIONS

: WORK ACCURATELY AND ANSWER ALL QUESTIONS.

NON-PROGRAMMABLE CALCULATORS PERMITTED

(ONLY ONE PER CANDIDATE).

QUESTION 1

[15 marks]

1000 kg of 8% by wt. sodium hydroxide (NaOH) solution is required. 20% sodium hydroxide solution in water and pure water are available. How much of each is required?

QUESTION 2 =

[20 marks]

2 moles of benzene and 3 moles of chlorine react to give 1.8 moles of monochlorobenzene and 0.1 moles dichlorobenzene. The reactions are as follows

$$C_6H_6 + Cl_2 \rightarrow C_6H_5Cl + HCl$$

(1) Desired reaction

$$C_6H_6 + 2Cl_2 \rightarrow C_6H_4Cl_2 + 2HCl$$

(2)

Determine the following:

- 1. % Excess Chlorine
- 2. Degree of completion
- 3. Conversion of benzene
- 4. Conversion of chlorine
- 5. Yield
- 6. Selectivity

QUESTION 3

[35 marks]

Water flows through the system shown in the diagram at a rate of 20 L/min. Estimate the pressure required at point 1 if friction losses are negligible.

Available formulas:

$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z + \left(\Delta \hat{U} - \frac{\dot{Q}}{\dot{m}}\right) = \frac{\dot{W}_s}{\dot{m}}$$

$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z + \hat{F} = \frac{\dot{W}_s}{\dot{m}}$$

$$\frac{\Delta P}{\rho} + \frac{\Delta u^2}{2} + g\Delta z = 0$$

Velocities are calculated as:

$$\dot{u}(m/s) = \dot{V}(m^3/s)/A(m^2)$$

QUESTION 4

[30 marks]

The vapour pressure of benzene is measured at two temperatures with the following results:

$$T_1 = 7.6$$
°C

$$T_1 = 7.6$$
°C $p_1^* = 40mmHg$

$$T_2 = 15.4^{\circ}$$

$$T_2 = 15.4$$
°C $p_2^* = 60 mmHg$

Calculate the latent heat of vaporization and the parameter B in the Clausius-Clapeyron equation (stated below) and then estimate p^* at 42.2°C using this equation.

$$\ln p^* = -\frac{\Delta \widehat{H}_v}{RT} + B$$

Where

B – is a constant which varies from substance to another.

END OF PAPER