PROGRAM : NATIONAL DIPLOMA

ENGINEERING: COMPUTER SYSTEMS

ENGINEERING: ELECTRICAL

SUBJECT

: CONTROL SYSTEMS 2

CODE

: ASY211

DATE

: SUPPLEMENTARY EXAMINATION

18 JULY 2018

DURATION : 08:00 - 11:00

WEIGHT

: 40:60

FULL MARKS : 100

TOTAL MARKS : 100

EXAMINER

: DR THOKOZANI C SHONGWE

MODERATOR : MR DR VAN NIEKERK

2330

NUMBER OF PAGES : 6 PAGES, INCLUDING 2 SEMILOG GRAPH PAPERS

AND 1 FORMULAE SHEET

INSTRUCTIONS

: CALCULATORS ARE PERMITTED (ONLY ONE PER

STUDENT)

: USE ONLY THE ANSWER SHEET PROVIDED WITH THIS

PAPER

INSTRUCTIONS TO CANDIDATES:

- 1. 100 MARKS = 100%
- 2. ATTEMPT ALL QUESTIONS.
- 3. THEORY TYPE QUESTIONS MUST BE ANSWERED IN POINT FORM BY CAREFULLY CONSIDERING THE MARK ALLOCATION.
- 4. QUESTIONS MAY BE ANSWERED IN ANY ORDER, BUT ALL PARTS OF OUESTION MUST BE KEPT TOGETHER.
- 5. ALL DIAGRAMS AND SKETCHES MUST BE DRAWN NEATLY AND IN PROPORTION.
- 6. ALL DIAGRAMS AND SKETCHES MUST BE LABELLED CLEARLY.
- 7. ALL WORK DONE IN PENCIL EXCEPT DIAGRAMS AND SKETCHES WILL BE CONSIDERED AS ROUGH WORK.
- 8. NOTE: MARKS WILL BE DEDUCTED FOR WORK WHICH IS POORLY PRESENTED.
- 9. NEGATIVE MARKING APPLIES IF YOUR ANSWER DOES NOT COMPLY WITH THE DETAIL REQUIRED AS REQUESTED IN CERTAIN QUESTIONS.

QUESTION 1

Determine the transfer function of the diagram above, using Mason's Rule.

QUESTION 2

Consider the passive network in the figure below, and

(a) determine the transfer function of the passive network

(10)

(b) find the transient response $V_0(t)$, if $V_{in}(t)$ is a unit step.

- (20)
- (c) draw the bode plots (both phase and magnitude versus frequency) of the transfer function. **DO NOT USE THE STRAIGHT LINE APPROXIMATION METHOD**.
- (10)

[40]

QUESTION 3

Find the transient response C(t) of a system with a transfer function:

$$G(p) = \frac{C(p)}{R(p)} = \frac{3}{p^2 + 7p + 3}$$

- (a) Subjected to a 25 V ramp input. (20)
- (b) Subjected to a unit step input. (20)

[40]

TOTAL MARKS: 100

	1 1 1 1 1				
	-+				
		╏╏╏ ╏╏╏ ╏╏╏	┆┆┆┆┆┆ ┆┆┆┆┆┆ ╍┠╍╬╃╬╬╬╾╾╾╃	 	
	-+			 	
<u> </u>				 	
		11 1 1			

<u>Laplace Transforms</u>

TIME FUNCTION f(t)	LAPLACE FUNCTION F(p)
Unit impulse	1
Unit step	$\frac{1}{p}$
Unit ramp	$\frac{1}{p^2}$
Unit parabolic	$\frac{1}{p^3}$
Exponential (e ^{-at})	$\frac{1}{p+a}$
Sinusoidal (sin(ωt))	$\frac{\omega}{p^2 + \omega^2}$
Co-sinusoidal (cos(ωt))	$\frac{p}{p^2+\omega^2}$
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(p+a)^n}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(p+a)^2+\omega^2}$
$e^{-at}cos(\omega t)$	$\frac{p+a}{(p+a)^2+\omega^2}$