
$\frac{\text { UNIVERSITEIT }}{\text { JOHANNESBURG }}$

	DEPARTMENT OF PURE AND APPLIED MATHEMATICS
MODULE	MAT2EC1 / MAT1C2E (CALCULUS SECTION) BIO \& ENVIRO MATHS AND STATS
CAMPUS	APK
EXAM	NOVEMBER 2017

DATE: 22 NOVEMBER 2017
ASSESSOR:
INTERNAL MODERATOR:
DURATION: 60 MINUTES

SESSION: 12:30-14:30
MR. T. MOHUBEDU
MR. V. VAN APPEL
MARKS: 50

SURNAME AND INITIALS: \qquad
STUDENT NUMBER: \qquad

CONTACT NUMBER: \qquad

Please read the following instructions carefully

1. Answer all questions on the paper in pen.
2. This paper consists of 10 pages including the cover page.
3. Show all calculations.
4. Calculators are allowed.

1.1 Does the point $(-2,0)$ lie on the graph of f ?

1.2 Find the value of $(f \cdot g)(0)$
1.3 Find the composition $f \circ g$
4. Find the equation of the straight line that is passing through the points $(-2,1)$ and $(3,0)$.
5. Set up a table to estimate the limit: $\lim _{t \rightarrow 0} \frac{\sin (t)}{2 t}$

6 Find a point on the given graph:
6.1 where the derivative is zero,
6.2 where the derivative is positive,
6.3 where the derivative is negative,
6.4 with maximum derivative,

7 Given $f(x)=x^{2}+2 x$
7.1 Find $f^{\prime}(x)$
7.3 Give the interval of increase and decrease.

The temperature of a room (T) is a function of how far the window is open (W, in cm^{2}) according to $\mathrm{T}(\mathrm{W})=35-2.7 \mathrm{~W}$. How long you sleep (P, measured in hours) is a function of the temperature according to $P(T)=16.5-0.4 T$
8.1 What is the maximum temperature of the room?
8.2 Find the formula of how long you sleep as a function of how far the window is open.
8.3 Find the formula of how far the window is open as a function of how long you sleep.

9 A population follows the discrete - time dynamical system $b_{t+1}=r b_{t}$ with $r=1.42$ and $b_{0}=2.0$.
9.1 Is the population increasing or decreasing?
9.2 Express the solution $b(t)$ of the system in exponential form..
9.2 Sketch the graph of the solution $b(t)$ for $0 \leq t \leq 5$.

A population has a doubling - time of 3 years and an initial size of 4×10^{3}.
10.1 What is the population in 12 years?
10.2 Find the equation for population size $P(t)$ as a function of time.
10.3 Find the average rate of change in population size during the third half hour.
11. Considering the given sinusoidal graph of f, find
11.1 the phase,
11.2 the period,
11.3 the amplitude,

11.4 the average,
11.5 and the equation of f
12.2 Sketch the graph of f for $0 \leq t \leq 3$.

13 Sketch the graph of $f(t)=e^{0.25 t} \cos \left(\frac{\pi t}{2}\right)$ for $0 \leq t \leq 8$. [5]

