UNIVERSITY OF JOHANNESBURG

	DEPARTMENT OF PURE AND APPLI	ED MATHEMATICS									
MODULEMAT2EC1 / MAT1C2E (CALCULUS SECTION) BIO & ENVIRO MATHS AND STATS											
CAMPUS	АРК										
EXAM	NOVEMBER 2017										
DATE: 22 NO	VEMBER 2017	SESSION: 12:30 – 14:30									
ASSESSOR:		MR. T. MOHUBEDU									
INTERNAL M	ODERATOR:	MR. V. VAN APPEL									
DURATION:	60 MINUTES	MARKS: 50									
SURNAME AI	ND INITIALS:										
STUDENT NU	JMBER:										
CONTACT NU	JMBER:										

Please read the following instructions carefully

- 1. Answer all questions on the paper in pen.
- 2. This paper consists of 10 pages including the cover page.
- 3. Show all calculations.
- 4. **Calculators are allowed.**

- 1 Given $f(x) = x^2 + 4$ and g(x) = x 1.
 - 1.1 Does the point (-2, 0) lie on the graph of f? [1]

1.2 Find the value of $(f \cdot g)(0)$ [2]

1.3 Find the composition $f \circ g$ [2]

2 Use the laws of exponents to simplify: $0.2^2 \cdot 5^3$ [2]

4. Find the equation of the straight line that is passing through the points (-2, 1) and (3, 0).

5. Set up a table to estimate the limit: $\lim_{t \to 0} \frac{\sin(t)}{2t}$ [2]

[2]

- 6 Find a point on the given graph:
 - 6.1 where the derivative is zero,
 - 6.2 where the derivative is positive,
 - 6.3 where the derivative is negative,
 - 6.4 with maximum derivative,

- 7 Given $f(x) = x^2 + 2x$ 7.1 Find f'(x) [1]
 - 7.3 Give the interval of increase and decrease. [2]

8 The temperature of a room (*T*) is a function of how far the window is open (*W*, in cm^2) according to T (W) = 35–2.7W. How long you sleep (*P*, measured in hours) is a function of the temperature according to P(T) = 16.5 - 0.4T

8.2 Find the formula of how long you sleep as a function of how far the window is open. [2]

8.3 Find the formula of how far the window is open as a function of how long you sleep. [2]

9 A population follows the discrete – time dynamical system $b_{t+1} = rb_t$ with r = 1.42 and $b_0 = 2.0$.

9.2 Express the solution b(t) of the system in exponential form. [1]

9.2 Sketch the graph of the solution b(t) for $0 \le t \le 5$. [3]

6 I MAT1C2E /MAT 2EC1 (calculus) Examination 22 November 2017

- 10 A population has a doubling time of 3 years and an initial size of 4×10^3 .
 - 10.1 What is the population in 12 years? [1]

10.2 Find the equation for population size P(t) as a function of time. [3]

10.3Find the average rate of change in population size during the
third half hour.[3]

- 11.4 the average,
- 11.5 and the equation of f

8 I MAT1C2E /MAT 2EC1 (calculus) Examination 22 November 2017

- 12 Given $f(t) = 2 + 2\cos(\pi t 1.571)$
 - 12.1 Write f in standard form [1]

12.2 Sketch the graph of f for $0 \le t \le 3$. [3]

9 I MAT1C2E /MAT 2EC1 (calculus) Examination 22 November 2017

13 Sketch the graph of $f(t) = e^{0.25t} \cos\left(\frac{\pi t}{2}\right)$ for $0 \le t \le 8$.
--

----- [TOTAL 50]

[5]