

FACULTY OF SCIENCE FAKULTEIT NATUURWETENSKAPPE

	DEPARTMENT (OF PURE AND APP	PLIED MATHEMA	TICS
MODULE	MAT1A2E			
	(Calculus of One	-Variable Functions I))	· · · · · · · · · · · · · · · · · · ·
CAMPUS APK				
EXAM SUPPLEMENTARY EXAMINATION – JANUARY 2018				
DATE: 08 JANUARY 2018			SESSION: 08:30 - 12:30	
ASSESSOR:			MS. D. SCHUBERT MS. T. OBERHOLZER	
MODERATOR	₹:		MR. J. HOMAI	NN
DURATION:	2 HOURS		MARKS: 50	
SURNAME AN	D INITIALS			
STUDENT NUM	MBER			
CONTACT NUM	MBER			

NUMBER OF PAGES: 13 PAGES (Including front page)

INSTRUCTIONS: ANSWER ALL THE QUESTIONS IN PEN ON THE EXAM PAPER.

CALCULATORS ARE NOT ALLOWED.

Find the domain of
$$f(x) = \sqrt[4]{\frac{x^2 - 3x - 4}{x^3 + 1}}.$$
 (3)

Question 2

Find
$$\lim_{k\to 0} \frac{\sin 3k}{\sin 7k}$$
 without using L'Hospital's Rule. (2)

Let
$$g(x) = \begin{cases} B^3 x^2; & x < 1 \\ B^2 - 2Bx; & x \ge 1 \end{cases}$$

Find B given that g is continuous at 1. (3)

(a) Find
$$f'(2)$$
 from First Principles if $f(x) = \frac{2}{\sqrt{3x-1}}$ (3)

(b) Hence, find the equation of the tangent to f at x=2.

(2)

Find the point(s) where the tangent(s) to $h(d) = \frac{2d}{d^4+3}$ is / are horizontal. (3)

Differentiate:

(a)
$$k(x) = \frac{e^{x^2}}{(3x-4)^5}$$
 (2)

(b)
$$xy + ex = -\ln(xe^{-2x}) + \sin y$$
 (3)

Evaluate:

(a)
$$\lim_{x \to -\frac{\pi}{2}} (-tanx)$$
 (1)

(b)
$$\lim_{p \to -\infty} \frac{\sqrt{p^2 + 3}}{p^2 - 1}$$
 (2)

(c)
$$\lim_{x \to \infty} \left(\frac{\sin 3x}{x^2} \right)$$
 (2)

Find the inverse of $f(x) = 3\ln(2x - 5) - 1$ (2)

Question 9

Determine: $\cot(sec^{-1}\frac{8}{3})$ (2)

Prove the Quotient Rule.

(4)

Simplify: $\neg [\forall x (x > 0 \lor x = x^4)]$ (2)

Question 12

Consider the following statement: "No swimmers drink alcohol."

(a) Translate the statement into formal language. (1)

(b) Write an informal negation of the statement.

Are the following statements TRUE or FALSE? Substantiate your answer.

(a)
$$\exists k \in Z \text{ such that } \sqrt[4]{k} = k$$
 (1)

(b)
$$\forall j \in R, j^6 \ge j$$

Compute the following:

(a) The first 3 terms of
$$a_n = \frac{2-(-1)^{2n}}{n^2}$$
; $n \ge 0$.

(b)
$$\sum_{i=3}^{5} \left(\frac{1}{2-i} - \frac{1}{i}\right)$$
. (2)

(a) Prove that if a is rational and b is irrational, then (a + b) is irrational. (2)

(c) Prove that
$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$
, for $n \ge 1$. (3)

END