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Question 1 [5]

Find all real numbers & for which the sequence
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COnvVerges.

Suggested solution: Let G denote the nth term of the given sequence.
Then
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for all £ € R. Thus, by the Ratio Test it follows that the series
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converges for all £ € R. Hence,
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for all k € R. Therefore, the given sequence converges for all k € R,



Question 2

[4]

State the Integral Test for series.

Suggested solution: Suppase fisa continuous, positive and decreasing
function on 1, 00) and let g, = f(n)foralln e N, Then the serieg D
Is convergent if and

=1 aﬂ‘.
only if the improper integral [ f(z)dz is convergent,
In other words:

(i) If 5= f@)de is convergent, then D e 1 Oy S convergent.

() If [ f(z)dz is divergent, then 2 2ne1 On 18 divergent,



Question 3 [10]

By using an appropriate method, determine whether the following series converge or diverge:

. arctanmn 4
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Suggested solution: By the properties of the arctan function, it follows
that the given series has positive terms. Hence, the Comparison Tests apply.

Conseider the p-series Doy n—;,lfg and observe that it is convergent since p =
g > 1. Moreover, notice that
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Hence, by the Limit Comparison Test it follows that the given series is con-
vergent.
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Question 4 4]
Find the radius and interval of convergence of the series;
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Question 5

Find the sum of the series: ) ) .
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Suggested solution: We have
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where we have used the fact that
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Question 6

Use series to approximate

correct to three decimal places.
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Question 7

B3]
If v is the speed of a particle along a curve C, T and N the unit tangent and unit normal
vectors respectively of the particle’s position vector r,

and & is the curvature of C, then show that
the acceleration a of the particle is given by

a=v"T+ k2N



Question 8

Calculate the curvature of the curve f(z) = ¢ in the plane,
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Question 9

r(t) =3costi+2sintj; ¢-

ol
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Question 10

If it is given that
ut) = r() - [1'(t) x r"(¢)]

then show
wit) =r(t) - [r'(t) x r(£)]

for r and u arbitrary position vectors,

12



