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Question 1 [12]
Answer the following True and False questions AND give a short justification/counterexample
respectively:

a) The dimension of a vector space V is defined by the number of vectors in the space. (2)
TRUE
FALSE

b) Let S = {v1, v2} be a subset of the vector space R3. Suppose that S is linearly independent,
but not a basis for R3. Then we may add any vector v /∈ span(S) to S to produce a basis for
R3. (2)

TRUE
FALSE

c) Any basis for the vector space Pn will have n basis vectors. (2)
TRUE
FALSE

d) If a matrix A is orthogonally, then A is symmetric. (2)
TRUE
FALSE

e) If a matrix A is orthogonally diagonalizable, then 0 is an eigenvalue of A. (2)
TRUE
FALSE
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f) If an n× n matrix is symmetric, then it has n distinct eigenvalues. (2)
TRUE
FALSE

Question 2 [4]
Let W = span((1, 0,−1, 2), (1, 2, 0, 0)) be a subspace of R4 with the Euclidean inner product.

(a) Find a basis for W⊥. (2)

(b) Does (1, 1, 1, 1) belong to W , W⊥, both or neither? Motivate your answer. (2)
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Question 3 [3]
Consider the subspace V = {(x, y, z) ∈ R3 | y − 2z = 0} of R3.

a) Find a basis for V . (2)

b) Find the dimension of V . (1)

Question 4 [4]

Let P =

1 1 0
1 0 2
1 2 1

 .

a) Find the basis B if P = PB→S, where S is the standard basis for R3. (1)
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b) Find the basis B if P = PS→B, where S is the standard basis for R3. (3)

Question 5 [7]

Consider the matrix A =

 3 1 −1
0 2 1
0 0 4


a) Determine whether A is diagonalizable. If A is diagonalizable, then find a matrix P that

diagonalizes A. If A is not diagonalizable, explain why not. (4)
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b) Find the geometric and algebraic multiplicity of each eigenvalue of A. (3)

Question 6 [6]
Consider the matrix transformation T : R2 → R2 is given by

T (3, 1) = (1, 2) and T (2, 1) = (−1, 1)

(a) Find T (1, 0) and T (0, 1) (2)

(b) Find the standard matrix [T ] (1)

(c) Show that T is one-to-one. (1)
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(d) Determine the formula to calculate T (x1, x2). (2)

Question 7 [6]
Consider the linear differential system:

y′1 = 3y1 − y2

y′2 = −y1 + 3y2

a) Solve the above system using the diagonalization method. (4)

b) Find a solution that satisfies the initial conditions y1(0) = −1 and y2(0) = 1. (2)
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Question 8 [5]

Let A =


1 1 0
1 1 0
1 0 −1
1 0 1

 and b̄ =


1
3
8
2


a) Find the QR-decomposition of A. (3)

b) Use the decomposition in a) to solve the least squares problem Ax̄ = b̄. (2)
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Question 9 [6]
Let Q be the following quadratic form:

Q(x1, x2) = 3x2
1 + 3x2

2 − 2x1x2

a) Find a symmetric matrix A such that x̄TAx̄ represents the quadratic form Q. (1)

b) Orthogonally diagonalize the matrix A found in a). (3)

c) Find an orthogonal change of variables that eliminates the cross product terms in the quadratic
form Q, and express Q in terms of the new variables. (1)
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d) Identify the conic section represented by the quadratic form obtained in c). (1)

Question 10 [7]

Let A =

[
1 2− i

2 + i −3

]

a) Let B = Im(A). Find a matrix P and the matrix C =

[
a −b
b a

]
such that

B = PCP−1. (3)

b) Find a unitary matrix P ′ that diagonalizes the matrix A. (4)
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