
$\frac{\text { UNIVERSITY }}{\text { JOHANNESBURG }}$
Faculty of Science

DEPARTMENT OF MATHEMATICS
MATOAB2
ENGINEERING LINEAR ALGEBRA B
SUPPLEMENTARY EXAM

Examiners:

Moderator:
Ms C. Le Roux
Dr J. Mba
Time: 120 minutes
Dr G. Braatvedt
60 MARKS

SURNAME AND INITIALS: \qquad
Student number: \qquad

Tel No.: \qquad

INSTRUCTIONS:

1. The paper consists of $\mathbf{1 0}$ printed pages, excluding the front page.
2. Answer all questions.
3. Write out all calculations (steps) and motivate all answers.
4. Read the questions carefully.
5. Questions are to be answered on the question paper in the space provided. Please indicate when the blank side of a page is used.
6. No calculators are allowed.
7. Good luck!

Answer the following True and False questions AND give a short justification/counterexample respectively:
a) The dimension of a vector space V is defined by the number of vectors in the space.

TRUE	
FALSE	

b) Let $S=\left\{\overline{v_{1}}, \overline{v_{2}}\right\}$ be a subset of the vector space \mathbb{R}^{3}. Suppose that S is linearly independent, but not a basis for \mathbb{R}^{3}. Then we may add any vector $\bar{v} \notin \operatorname{span}(S)$ to S to produce a basis for \mathbb{R}^{3}.

TRUE	
FALSE	

c) Any basis for the vector space P_{n} will have n basis vectors.

TRUE	
FALSE	

d) If a matrix A is orthogonally, then A is symmetric.

TRUE	
FALSE	

e) If a matrix A is orthogonally diagonalizable, then 0 is an eigenvalue of A.

TRUE	
FALSE	

f) If an $n \times n$ matrix is symmetric, then it has n distinct eigenvalues.

Question 2
Let $W=\operatorname{span}((1,0,-1,2),(1,2,0,0))$ be a subspace of \mathbb{R}^{4} with the Euclidean inner product.
(a) Find a basis for W^{\perp}.
(b) Does $(1,1,1,1)$ belong to W, W^{\perp}, both or neither? Motivate your answer.

Question 3
Consider the subspace $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y-2 z=0\right\}$ of \mathbb{R}^{3}.
a) Find a basis for V.
b) Find the dimension of V.

Question 4
Let $P=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 1\end{array}\right]$.
a) Find the basis B if $P=P_{B \rightarrow S}$, where S is the standard basis for \mathbb{R}^{3}.
b) Find the basis B if $P=P_{S \rightarrow B}$, where S is the standard basis for \mathbb{R}^{3}.

Question 5

Consider the matrix $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 4\end{array}\right]$
a) Determine whether A is diagonalizable. If A is diagonalizable, then find a matrix P that diagonalizes A. If A is not diagonalizable, explain why not.
b) Find the geometric and algebraic multiplicity of each eigenvalue of A.

Question 6

Consider the matrix transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by

$$
\begin{equation*}
T(3,1)=(1,2) \text { and } T(2,1)=(-1,1) \tag{2}
\end{equation*}
$$

(a) Find $T(1,0)$ and $T(0,1)$
(b) Find the standard matrix $[T]$
(c) Show that T is one-to-one.
(d) Determine the formula to calculate $T\left(x_{1}, x_{2}\right)$.

Question 7
Consider the linear differential system:

$$
\begin{align*}
y_{1}^{\prime} & =3 y_{1}-y_{2} \\
y_{2}^{\prime} & =-y_{1}+3 y_{2} \tag{4}
\end{align*}
$$

a) Solve the above system using the diagonalization method.
b) Find a solution that satisfies the initial conditions $y_{1}(0)=-1$ and $y_{2}(0)=1$.

Question 8

Let $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 1\end{array}\right]$ and $\bar{b}=\left[\begin{array}{l}1 \\ 3 \\ 8 \\ 2\end{array}\right]$
a) Find the QR-decomposition of A.
b) Use the decomposition in a) to solve the least squares problem $A \bar{x}=\bar{b}$.

Question 9

Let Q be the following quadratic form:

$$
Q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+3 x_{2}^{2}-2 x_{1} x_{2}
$$

a) Find a symmetric matrix A such that $\bar{x}^{T} A \bar{x}$ represents the quadratic form Q.
b) Orthogonally diagonalize the matrix A found in a).
c) Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form Q, and express Q in terms of the new variables.
d) Identify the conic section represented by the quadratic form obtained in c).

Question 10
Let $A=\left[\begin{array}{cc}1 & 2-i \\ 2+i & -3\end{array}\right]$
a) Let $B=\operatorname{Im}(A)$. Find a matrix P and the matrix $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that $B=P C P^{-1}$.
b) Find a unitary matrix P^{\prime} that diagonalizes the matrix A.

