

FACULTY OF SCIENCE

DEPARTMENT OF PURE AND APPLIED MATHEMATICS

MODULE: MAFT0A3/MA3AFET

COURSE: MATHEMATICS 3A FOR TEACHERS

CAMPUS: APK

EXAM: JUNE 2017

DATE: TUESDAY 6 JUNE 2017

TIME: 08:30 - 11:30

ASSESSOR:

EXTERNAL MODERATOR:

DURATION: 3 HOURS

MS. R. DURANDT

DR. B. POSTHUMA

MARKS: 120

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: 16 PAGES (including front page)

INSTRUCTIONS: ANSWER ALL THE QUESTIONS, CALCULATORS ARE NOT ALLOWED

1 | MAFT0A3/MA3AFET JUNE 2017 EXAMINATION

SECTION A:	SHORT ANSWER AND THEORY QUESTIONS	[11]
	-	

Question 1:

(5)

Complete the following short answer questions by providing the correct answer in the allocated space.

Question	Answer
Evaluate the integral:	
$\int x^{-4} dx$	
Evaluate the integral:	
$\int \frac{dx}{2}$	
Evaluate the integral:	
$\int e^{x} dx$	
Evaluate the integral:	
$\int tanxdx$	
Evaluate the integral:	
$\int \frac{dx}{\sqrt{9-x^2}}$	

Question 2:

(6)

2.1 State the rule for integration by parts.

2.2 If the expression $\sqrt{a^2 - x^2}$ occurs in an integral, what trigonometry substitution might you try?

(1)

2.3 Write the ratio as a mixed number:

$$\frac{x^5+x-1}{x^3+1}$$

(2)

2.4 State True or False:

$$\cos 2x = 2\sin^2 x - 1$$

(1)

2.5 State **True** or **False**:

$$\frac{d}{dx}(2^3) = 2^3 \ln 2 \tag{1}$$

SECTION B: MULTIPLE CHOICE QUESTIONS

Question 3:

The following questions are multiple choice questions. There is only one correct answer from the choices given. Select the correct option by marking the option with a cross (**X**).

3.1 The slope of the tangent line to the graph of $y = (\ln x)e^x$ at the point x = 2 is:

- a) $\frac{e^2}{2}$
- b) e
- c) $e^{2}\left(\ln 2 + \frac{1}{2}\right)$
- d) $e(2\ln 2 + 1)$
- e) None of the above.

(6)

3.2 Determine the following indefinite integral:

$$\int \frac{y^3 + 4y^2}{y^3 + y} dy$$

- a) $\frac{1}{2}y^2 + \ln|y^2 + 1| 2\tan^{-1}y + C$
- b) $\overline{y} + 2ln|y^2 + 1| \tan^{-1}y + C$
- c) $2y^2 + 2ln|y^2 + 1| + \tan^{-1}y + C$
- d) $\frac{1}{2}y^2 2ln|y^2 + 1| \frac{1}{4}\tan^{-1}y + C$
- e) None of the above.

(6)

3.3 Evaluate the following definite integral:

$$\int_2^4 \frac{2dx}{x^2 - 6x + 10}$$

- a) π
- b) 0
- c) $\frac{\pi}{2}$
- d) 2π
- e) None of the above.

(6)

Question 4:

4.1 Each of the regions **A**, **B** and **C** bounded by the graph of f and the x = axis has area equal to 3. Find the value of $\int_{-4}^{2} [f(x) + 2x + 5] dx$ by using the given sketch below.

Figure from Stewart, J. (2013). Essential Calculus. CENGAGE Learning.

(5)

4.2 Express the limit as a definite integral on the interval [1,5], but do not solve the integral.

$$\lim_{n\to\infty}\sum_{i=1}^n\frac{x_i}{1+x_i}\Delta x$$

(3)

(15)

4.3 Approximate the given definite integral by using a **Riemann sum**, working with four subintervals, taking the sample points to be <u>left</u> endpoints. Explain, by using a diagram (drawing), what the Riemann sum represents and show all calculations.

$$\int_0^2 (x^2 - x) dx$$

(7)

Question 5:

The half-life of *radium A* is 500 years and a sample of *radium A* has a mass of 10mg. (simplify answers)

5.1 Find a formula for the mass of *radium A* that remains after *t* years.

(3)

(2)

5.2 Find the mass after 1200 years.

- 5.3 Find the rate of decay after 3 years.
- 5.4 When will the mass be 1mg?

(2)

(3)

Question 6:

6.1 If $g(x) = \int_{1}^{\sqrt{x}} \frac{e^{t}}{t} dt$, then calculate g'(1) by using the Fundamental Theorem of Calculus.

(3)

(20)

6.2 Calculate the derivative of:

$$g(x) = sin[ln(cosx)]$$

(3)

6.3 Calculate the derivative of:

$$y = \cos^{-1}(\sqrt{x}) - x \tan x \tag{4}$$

6.4 Calculate the derivative of:

$$y = \log_6\left(\frac{1}{x}\right) \tag{2}$$

6.5 Calculate the derivative of f and hence find $f'(e^3)$. Given that:

$$f(x) = \frac{x}{\ln x}$$
(4)

6.6 Use Logarithmic differentiation to find $\frac{dy}{dx}$ if $y = x^{e^{sinx}}$

(4)

Question 7:

7.1 Evaluate the integral:

$$\int x\sqrt{9-5x^2}dx$$

7.2 Evaluate the indefinite integral:

$$\int \frac{x}{1+x^4} dx$$

l	Λ	١
۱	+	1

(4)

7.3 Use a proper integration technique to evaluate the integral:

(6)

7.4 Use a proper integration technique to evaluate the integral:

$$\int sin^6 x cos^3 x dx$$

(6)

Question 8:

8.1 Determine the area (*A*) included by the curves (draw a suitable graph and show clear calculations):

$$y = 1 - 2x^2$$
 and $y = |x|$

(8)

8.2 Calculate the volume obtained by rotating the closed region between the curve y = lnx and the lines y = 2, y = 1 and x = 0 about the line y - axis. Draw a sketch, indicate the cross-sectional area and show all calculations.

Question 9:

9.1 Solve the initial value problem below with y(0) = 2, given:

$$\frac{dy}{dx} = e^{x-y} \tag{5}$$

(10)

9.2 Use L'Hôpitals's Rule to obtain the following limits:

$$\lim_{x \to 0^+} (1-x)^{2/x}$$
(5)