FACULTY OF SCIENCE

\square

DATE: TUESDAY 6 JUNE 2017
TIME: 08:30-11:30
ASSESSOR:
MS. R. DURANDT

EXTERNAL MODERATOR:
DR. B. POSTHUMA
DURATION: 3 HOURS
MARKS: 120

SURNAME AND INITIALS

STUDENT NUMBER

CONTACT NUMBER

NUMBER OF PAGES: 16 PAGES (including front page)
INSTRUCTIONS: ANSWER ALL THE QUESTIONS, CALCULATORS ARE NOT ALLOWED

Question 1:

Complete the following short answer questions by providing the correct answer in the allocated space.

Question	Answer
Evaluate the integral:	
$\int x^{-4} d x$	
Evaluate the integral:	
$\int \frac{d x}{2}$	
Evaluate the integral:	
$\int e^{x} d x$	
Evaluate the integral:	
$\int \tan x d x$	
Evaluate the integral:	
$\int \frac{d x}{\sqrt{9-x^{2}}}$	

Question 2:

(6)
2.1 State the rule for integration by parts.
(1)
2.2 If the expression $\sqrt{\boldsymbol{a}^{2}-\boldsymbol{x}^{2}}$ occurs in an integral, what trigonometry substitution might you try?
2.3 Write the ratio as a mixed number:

$$
\frac{x^{5}+x-1}{x^{3}+1}
$$

2.4 State True or False:

$$
\cos 2 x=2 \sin ^{2} x-1
$$

(1)
2.5 State True or False:

$$
\frac{d}{d x}\left(2^{3}\right)=2^{3} \ln 2
$$

Question 3:

The following questions are multiple choice questions. There is only one correct answer from the choices given. Select the correct option by marking the option with a cross (X).
3.1 The slope of the tangent line to the graph of $\boldsymbol{y}=(\ln \boldsymbol{x}) \boldsymbol{e}^{\boldsymbol{x}}$ at the point $x=2$ is:
a) $\frac{e^{2}}{2}$
b) e
c) $e^{2}\left(\ln 2+\frac{1}{2}\right)$
d) $e(2 \ln 2+1)$
e) None of the above.
3.2 Determine the following indefinite integral:

$$
\int \frac{y^{3}+4 y^{2}}{y^{3}+y} d y
$$

a) $\frac{1}{2} y^{2}+\ln \left|y^{2}+1\right|-2 \tan ^{-1} y+C$
b) $y+2 \ln \left|y^{2}+1\right|-\tan ^{-1} y+C$
c) $2 y^{2}+2 \ln \left|y^{2}+1\right|+\tan ^{-1} y+C$
d) $\frac{1}{2} y^{2}-2 \ln \left|y^{2}+1\right|-\frac{1}{4} \tan ^{-1} y+C$
e) None of the above.
3.3 Evaluate the following definite integral:

$$
\int_{2}^{4} \frac{2 d x}{x^{2}-6 x+10}
$$

a) π
b) 0
c) $\frac{\pi}{2}$
d) 2π
e) None of the above.

Question 4:

4.1 Each of the regions $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} bounded by the graph of f and the $x=$ axis has area equal to 3. Find the value of $\int_{-4}^{2}[f(x)+2 x+5] d x$ by using the given sketch below.

Figure from Stewart, J. (2013). Essential Calculus. CENGAGE Learning.
4.2 Express the limit as a definite integral on the interval [1,5], but do not solve the integral.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{x_{i}}{1+x_{i}} \Delta x \tag{3}
\end{equation*}
$$

4.3 Approximate the given definite integral by using a Riemann sum, working with four subintervals, taking the sample points to be left endpoints. Explain, by using a diagram (drawing), what the Riemann sum represents and show all calculations.

$$
\int_{0}^{2}\left(x^{2}-x\right) d x
$$

Question 5:

The half-life of radium A is 500 years and a sample of radium A has a mass of 10 mg . (simplify answers)
5.1 Find a formula for the mass of radium A that remains after t years.
5.2 Find the mass after 1200 years.
5.3 Find the rate of decay after 3 years.
5.4 When will the mass be 1 mg ?

Question 6:

6.1 If $\boldsymbol{g}(\boldsymbol{x})=\int_{1}^{\sqrt{x}} \frac{e^{t}}{\boldsymbol{t}} d \boldsymbol{t}$, then calculate $\boldsymbol{g}^{\prime}(\mathbf{1})$ by using the Fundamental Theorem of Calculus.
6.2 Calculate the derivative of:

$$
g(x)=\sin [\ln (\cos x)]
$$

(3)
6.3 Calculate the derivative of:

$$
y=\cos ^{-1}(\sqrt{x})-x \tan x
$$

(4)
6.4 Calculate the derivative of:

$$
\begin{equation*}
y=\log _{6}\left(\frac{1}{x}\right) \tag{2}
\end{equation*}
$$

6.5 Calculate the derivative of f and hence find $\boldsymbol{f}^{\prime}\left(\boldsymbol{e}^{\mathbf{3}}\right)$. Given that:

$$
f(x)=\frac{x}{\ln x}
$$

(4)
6.6 Use Logarithmic differentiation to find $\frac{d y}{d x}$ if $y=x^{e^{\operatorname{sinx} x}}$

Question 7:

7.1 Evaluate the integral:

$$
\int x \sqrt{9-5 x^{2}} d x
$$

(4)
7.2 Evaluate the indefinite integral:

$$
\int \frac{x}{1+x^{4}} d x
$$

7.3 Use a proper integration technique to evaluate the integral:

$$
\int x \tan ^{2} x d x
$$

(6)
7.4 Use a proper integration technique to evaluate the integral:

$$
\int \sin ^{6} x \cos ^{3} x d x
$$

(6)

Question 8:

8.1 Determine the area (A) included by the curves (draw a suitable graph and show clear calculations):

$$
y=1-2 x^{2} \text { and } y=|x|
$$

(8)
8.2 Calculate the volume obtained by rotating the closed region between the curve $\boldsymbol{y}=\boldsymbol{\operatorname { l n }} \boldsymbol{x}$ and the lines $\boldsymbol{y}=\mathbf{2}, \boldsymbol{y}=\mathbf{1}$ and $\boldsymbol{x}=\mathbf{0}$ about the line y-axis. Draw a sketch, indicate the cross-sectional area and show all calculations.
(8)

Question 9:

9.1 Solve the initial value problem below with $\boldsymbol{y}(\mathbf{0})=2$, given:

$$
\frac{d y}{d x}=e^{x-y}
$$

(5)
9.2 Use L'Hôpitals's Rule to obtain the following limits:

$$
\lim _{x \rightarrow 0^{+}}(1-x)^{2 / x}
$$

(5)

