

DEPARTMENT OF PURE AND APPLIED MATHEMATICS					
MAFT0A1 MATHEMATICS FOR TEACHERS 1					
АРК					
TARY EXAM JULY 2017					
	MS. S. RICHARDSON				
ODERATOR:	MS. R. DURANDT				
2 HOURS	MARKS: 100				
ND INITIALS					
MBER					
IMBER					
	MAFTOA1 MATHEMATICS FOR TEACHER APK				

INSTRUCTIONS: ANSWER ALL THE QUESTIONS, CALCULATORS ARE NOT ALLOWED.

Question 1 [5 x 2 = 10]

Determine whether the following statements are true or false. If false, explain why or give an example.

Statement	True or False & Explanation		
The graph of the function is a parabola $y = e^2 x$			
The function is symmetrical with respect to the origin $f(x) = \frac{1}{x}$			
The length of the radius of the given circle is 16: $(x - 1)^2 + y^2 = 16$			
The point (x, y) where $x > 0$ and $-y > 0$ lies in the first quadrant			
$\frac{1}{a^{-1} + b^{-1}} = a + b$			

Question 2: [5 x 2 = 10]

The following questions are multiple choice questions. There is only one correct answer from the choices given. Circle the correct option.

2.1 Which expression is equal to

 $(-c^2)^{-\frac{1}{3}}$?

- Α.
- В.
- $\frac{1}{\sqrt[3]{-c^2}}$ $\frac{1}{\sqrt[3]{c^2}}$ $\frac{1}{\sqrt[3]{-c^3}}$ C.
- $\sqrt[3]{c^2}$ D.
- E. None of these
- 2.2 Use the graph to answer this question

The line $y = \frac{1}{2}x + \frac{1}{2}$ passes through which point?

- Α. A(-5;7)
- B(-7; -3)Β.
- C(-7; 4)C.

D.
$$D(-5; -7)$$

- Ε. None of these
- Given the equation ax + by + c = 0, which of the following must be true for the 2.3 graph of the line to have a **positive slope and a positive** y-intercept?
- A. *a* > 0, *b* > 0, *c* > 0
- *a* > 0, *b* < 0, *c* > 0 B.
- C. a > 0, b > 0, c < 0
- D. *a* > 0, *b* < 0, *c* < 0
- E. None of these

Α. $y \to \infty$ as $x \to \infty$ and $y \to \infty$ as $x \to -\infty$ $y \to \infty$ as $x \to \infty$ and $y \to -\infty$ as $x \to -\infty$ Β. C. $y \rightarrow -\infty$ as $x \rightarrow \infty$ and $y \rightarrow \infty$ as $x \rightarrow -\infty$ D. $y \rightarrow -\infty$ as $x \rightarrow \infty$ and $y \rightarrow -\infty$ as $x \rightarrow -\infty$ Ε. None of these The zeros of $y = x^3 + 4x^2 - x - 4$ are 2.5 -1; 1; 4 Α. -1; 2; 2B. -2; 1; 2 C. -1; 1; -4D. E. None of these

Find the **end behaviour** of $y = -x^3 + 10x^2 - 1$

Question 3 [14]

2.4

3.1 Express as a single logarithm :

$$3\log_2(x+1) - \log_2 x^2 + 1$$

3.2 Express in the form a + bi:

$$\frac{3-i}{1+2i}$$

[2]

3.3 Find the equation of the inverse function of f.

$$f(x) = e^{2x-1}$$

[3]

3.4 Find and simplify $f \circ g$ and find its domain:

$$f(x) = \frac{2}{x}$$
, $g(x) = \frac{1}{x-2}$

[3]

3.5 Find the quotient and the remainder.

$$(x^4 + 1) \div (x^2 - x - 1)$$

Question 4 [19]

4.1 Solve the equation by the method of completing the square:

$$2x^2 + 5x + 3 = 0$$

[5]

4.2 Solve for :

a.

$$\sqrt{2x+3} - 2 = x$$

[3]

b.

$$e^{2x} - 3e^x + 2 = 0$$

[3]

d.

c.

$$\frac{x+1}{x+3} \le \frac{x-2}{x-1}$$

[4]

Question 5 [12]

5.1 Show that the points are vertices of a right triangle:

A (-2,9), B (1,0) C (-5,3)

[3] 5.2 Determine the equation of a circle with centre (-1, 5) that passes through the point (-4, 6).

[3]

5.3 Determine the equation of the straight line through the point (-1, 2) that is perpendicular to the line y = 3 - 2x.

5.4 Describe the transformations with respect to the parent function $g(x) = \sqrt{x}$.

$$f(x) = 1 - \sqrt{x+2}$$

[3]

Question 6 [26]

6.1 Sketch the graph of

$$y = \ln(-1 + x)$$

clearly indicating the asymptote and intercepts with the axes.

[3]

6.2 Given

$$f(x) = \begin{cases} \sqrt{x-1}, & x > 1\\ 2, & x \le 1 \end{cases}$$

a. Determine f(-2)

[1]

- b. Determine f(1)
- c. Determine f(10)

[1]

[1]

d. What is the *y*-intercept of f(x)?

[1]

6.3 Given

$$f(x) = -x^2 + x + 2$$

a. Express f in the form $f(x) = a(x - h)^2 + k$

[3]

b. Determine the x – and y –intercepts of f(x).

c. Sketch the graph of f(x), showing the x – and y –intercepts and the turning point.

[3]

[1]

- d. State the range of *f*
- e. For which interval(s) is *f* increasing?

[1]

6.4 Given

$$f(x) = \frac{x^2 - 4}{x^2}$$

a. Determine the x – and y -intercepts of f(x).

b. Find the vertical asymptote(s) of f(x).

[1]

[2]

c. Find the horizontal asymptote(s) of f(x).

[1]

d. Complete the table:

x	-3	-1	1	3
у				

[2]

e. Sketch the graph of f(x).

[3]

Question 7 [9]

7.1 Show that x + 1 is a factor of $f(x) = x^3 - 3x - 2$

[1]

7.2 Use (7.1) to fully factorise f(x).

[3]

7.3 Now find the partial fraction decomposition of:

$$\frac{2x-7}{x^3-3x-2}$$

[5]